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Conditional probabilities for euro area sovereign default risk

Abstract

We propose an empirical framework to infer the likelihood of joint and conditional

sovereign defaults from observed CDS prices. Our model is based on a dynamic skewed-

t copula which captures all the salient features of the data, including skewed and

heavy-tailed changes in the price of CDS protection against sovereign default, as well

as dynamic volatilities and correlations to ensure that risk dependence can increase in

times of stress. We apply the framework to euro area sovereign CDS spreads from 2008

to mid-2011. Our results reveal significant time-variation in distress dependence and

considerable spill-over effects in the likelihood of sovereign default. We also investigate

distress dependence around a policy announcement on May 9, 2010, and demonstrate

the importance of capturing higher-order time-varying moments during times of crisis

for the correct assessment of interacting risks.

Keywords: sovereign credit risk; higher order moments; time-varying parameters; fi-

nancial stability.

JEL classifications: C32, G32.



Non-technical summary

This paper introduces a novel empirical framework to estimate marginal, joint, and con-

ditional probabilities of sovereign default from observed prices for credit default swaps (CDS)

on sovereign debt. Such joint and conditional probabilities of default can be informative for

risk management and financial sector surveillance purposes. Our methodology is novel in

that our joint risk measures are derived from a multivariate framework based on a dynamic

Generalized Hyperbolic (GH) skewed-t copula that naturally accommodates skewed and

heavy tailed changes in marginal risks as well as time variation in volatility and multivariate

dependence.

This paper makes four main contributions to the literature on risk assessment. First, we

provide time series estimates of the variation in euro area joint and conditional sovereign

default risk based on our modeling framework and CDS data from January 2008 to June

2011. For example, we compute the conditional probability of, say, a default on Portuguese

debt given a credit event in Greece, as expected by the market. In addition, we may infer

which countries appear more exposed to certain credit events than others. As the model-

implied probabilities are inferred solely from market prices, such estimates reflect what is

expected by market participants at a given point in time, and are uninformative about

any policy stance. As a second contribution, we analyze the extent to which parametric

assumptions matter for joint and conditional sovereign risk assessments. We demonstrate

that the distributional assumptions matter most for our conditional assessments, whereas

simpler joint failure estimates are less sensitive to the assumed dependence structure. Third,

our modeling framework allows us to investigate the presence and severity of spill-overs in the

likelihood of sovereign failure. In this regard we document spill-overs from the possibility

of a credit event in one euro area country to the perceived riskiness of other countries.

These spill-overs effects are pronounced and suggest that the cost of debt refinancing in

some European countries depends on developments in other countries. Fourth, we provide



an in-depth analysis of the impact on sovereign joint and conditional risks of a key policy

announcement on May 9, 2010. This event study shows how our model can be used to

disentangle market assessments of joint and conditional probabilities.

From a more technical perspective, our modeling framework has several attractive fea-

tures that each match empirical stylized facts regarding changes in euro area sovereign CDS

prices, i.e., volatility clustering, dynamic correlation, non-trivial tail dependence, and the

ability to handle a cross sectional dimension of intermediate size. Univariate GH skewed-t

models first accommodate the pronounced volatility clustering in the marginal risks — in

addition to skewness and substantial fat tails. Second, the correlation structure between

individual countries’ risk is likely to be time-varying, as correlations tend to increase during

times of stress, and policy decisions may have a direct impact on the implied dependence

structure. We consequently propose a model with a dynamic correlation matrix from the

outset. Third, we would like to allow for non-Gaussian features such as multivariate extreme

tail dependence when modeling interconnected joint risks. Fourth, the model needs to be

flexible enough to be calibrated repeatedly to current market conditions, such as current

CDS spread levels. Finally, and most obviously, an application to euro area sovereign risk

requires us to handle dimensions larger than usual in the non-Gaussian dependence or copula

literature (less than five). These considerations directly favor the use of the novel modeling

framework employed in this paper.
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1 Introduction

The Eurozone debt crisis raises the issue of measuring and monitoring interconnected sovereign

credit risk. In this paper we construct a novel empirical framework to assess the likelihood

of joint and conditional default for euro area sovereigns. This new framework allows us to

estimate marginal, joint, and conditional probabilities of sovereign default from observed

prices for credit default swaps (CDS) on sovereign debt. We define default, or failure, as any

credit event that would trigger a sovereign CDS contract. Examples of such events are the

non-payment of principal or interest when it is due, a forced exchange of debt into claims

of lower value, or a moratorium or official repudiation of the debt. Unlike marginal proba-

bilities, conditional probabilities of sovereign default cannot be obtained from raw market

data alone, but instead require a proper joint modeling framework. Our methodology is

novel in that our probability assessments are derived from a multivariate framework based

on a dynamic Generalized Hyperbolic (GH) skewed-t density that naturally accommodates

all relevant empirical features of the data, such as skewed and heavy-tailed changes in indi-

vidual country CDS spreads, as well as time variation in their volatilities and dependence.

Moreover, the model can easily be calibrated to match current market expectations regard-

ing the marginal probabilities of default, similar to for example Segoviano and Goodhart

(2009) and Huang, Zhou, and Zhu (2009).

We make four main contributions. First, we provide estimates of the time variation in

euro area joint and conditional sovereign default risk using a new model and a 10-dimensional

data set of sovereign CDS spreads from January 2008 to June 2011. For example, we estimate

the conditional probability of a default on Portuguese debt given a Greek failure to be around

30% at the end of our sample in mid-June 2011. We report similar conditional probabilities

for other countries. At the same time, we infer which countries are more exposed than others

to certain credit events.

Second, we analyze the extent to which parametric modeling assumptions matter for such
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joint and conditional risk assessments. Perhaps surprisingly, and despite the potential use

of joint risk measures to guide policy decisions, we are not aware of a detailed investigation

of how different parametric assumptions matter for joint and conditional risk assessments.

We therefore report results based on a dynamic multivariate Gaussian, symmetric-t, and

GH skewed-t (GHST) specification. The distributional assumptions turn out to be most

important for our conditional assessments, whereas simpler joint failure probability estimates

are less sensitive to the assumed dependence structure. In particular, and much in line with

Forbes and Rigobon (2002), we show that it is important to account for the different salient

features of the data, such as non-zero tail dependence and skewness, when interpreting

estimates of time-varying volatilities and increases in correlation in times of stress.

Third, our modeling framework allows us to investigate the presence and severity of

market implied spill-overs in the likelihood of sovereign default. Specifically, we document

spill-overs from the possibility of a Greek default to the perceived riskiness of other euro

area countries. For example, at the end of our sample we find a difference of about 25%

between the one-year conditional probability of a Portuguese default given that Greece does

versus that Greece does not default. This indicates that the cost of debt refinancing in some

European countries may depend to a considerable extent on developments in other countries.

Fourth, we provide an in-depth analysis of the impact on sovereign joint and conditional

risks of a key policy announcement on May 9, 2010. On this day, euro area heads of state

announced a comprehensive rescue package to mitigate sovereign risk conditions and per-

ceived risk contagion in the Eurozone. The rescue package contained the European Financial

Stability Facility (EFSF), a rescue fund, and the ECB’s Securities Markets Program (SMP),

under which the central bank can purchase government bonds in secondary markets. This

event study shows how our model can be used to disentangle market assessments of joint

and conditional probabilities. In particular, for May 9, 2010 we find that market percep-

tions of joint sovereign default risk have decreased, while market perceptions of conditional
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sovereign default risk have not decreased at the same time. From a risk perspective, our

joint approach is in line with for example Acharya, Pedersen, Philippon, and Richardson

(2010) who focus on financial institutions: bad outcomes are much worse if they occur in

clusters. What seems manageable in isolation may not be so if the rest of the system is also

under stress. While adverse developments in one country’s public finances could perhaps

still be handled with the support of the remaining healthy countries in the Eurozone, the

situation may become more and more problematic if two, three, or more countries are in

distress. Relevant questions regarding joint and conditional sovereign default risks would be

hard if not impossible to answer without an empirical model such as the one proposed in

this paper.

The use of CDS data to estimate market implied failure probabilities means that our

probability estimates combine physical failure probabilities with the price of sovereign default

risk. As a result, our risk measures constitute an upper bound for an investor worried about

losing money due to a joint sovereign failure. This has to be kept in mind when interpreting

the empirical results later on. Estimating failure probabilities directly from observed defaults,

however, is impossible in our context, as OECD defaults are not observed over our sample

period. Even if such defaults would have been observed, they would not have allowed us to

perform the detailed empirical analysis in the current section on the dynamics of joint and

conditional failure probabilities.

The literature on sovereign credit risk has expanded rapidly and branched off into different

fields. Part of the literature focuses on the theoretical development of sovereign default

risk and strategic default decisions; see for example Guembel and Sussman (2009) or Yue

(2010). Another part of the literature tries to disentangle the different priced components of

sovereign credit risk using asset pricing methodology, including the determination of common

risk factors across countries; see for example Pan and Singleton (2008), Longstaff, Pan,

Pedersen, and Singleton (2011), or Ang and Longstaff (2011). Finally, there is a line of
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literature that investigates the link between sovereign credit risk, country ratings, and macro

fundamentals; see for example Haugh, Ollivaud, and Turner (2009), Hilscher and Nosbusch

(2010), or DeGrauwe and Ji (2012).

Our paper primarily relates to the empirical literature on sovereign credit risk as proxied

by sovereign CDS spreads and focuses on spill-over risk as perceived by financial markets.

We take a pure time-series perspective instead of assuming a specific pricing model as in

Longstaff, Pan, Pedersen, and Singleton (2011) or Ang and Longstaff (2011). The advantage

of such an approach is that we are much more flexible in accommodating all the relevant em-

pirical features of CDS changes given that we are not bound by the analytical (in)tractability

of a particular pricing model. This appears particularly important for the data at hand. In

particular, our paper relates closely to the statistical literature for multiple defaults, such as

for example Li (2001), Hull and White (2004) or Avesani, Pascual, and Li (2006). These pa-

pers, however, typically build on a Gaussian or sometimes symmetric Student t dependence

structure, whereas we impose a dependence structure that allows for non-zero tail depen-

dence, skewness, and time variation in both volatilities and correlations. Our approach

therefore also relates to an important strand of literature on modeling dependence in high

dimensions, see for example Demarta and McNeil (2005), Christoffersen, Errunza, Jacobs,

and Langlois (2011), Oh and Patton (2012), and Engle and Kelly (2009), as well as to a

growing literature on observation-driven time varying parameter models, such as for exam-

ple Patton (2006), Harvey (2010), and Creal, Koopman and Lucas (2011, 2012). Finally,

we relate to the CIMDO framework of Segoviano and Goodhart (2009). This is based on a

multivariate prior distribution, usually Gaussian or symmetric-t, that can be calibrated to

match marginal risks as implied by the CDS market. Their multivariate density becomes

discontinuous at so-called threshold levels: some parts of the density are shifted up, others

are shifted down, while the parametric tails and extreme dependence implied by the prior

remain intact at all times. Our model does not have similar discontinuities, while it allows
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for a similar calibration of default probabilities to current CDS spread levels as Segoviano

and Goodhart (2009).

The remainder of the paper is set up as follows. Section 2 introduces the conceptual

framework for joint and conditional risk measures. Section 3 introduces the multivariate

statistical model for failure dependence. The empirical results are discussed in Section 4.

Section 5 concludes.

2 Conceptual framework

In a corporate credit risk setting, the probability of default is often modeled as the probability

that the value of a firm’s assets falls below the value of its debt at (or before) the time

when the debt matures, see Merton (1974) and Black and Cox (1976). To allow for default

clustering, the default processes of individual firms can be linked together using a copula

function, see for example McNeil, Frey, and Embrechts (2005). In a sovereign credit risk

setting, a similar approach can be adopted, though the interpretation has to be slightly

altered given the different nature of a sovereign compared to a corporate default. Rather

than to consider asset levels falling below debt values, it is more convenient for sovereign

credit risk to compare costs and benefits of default, see for example Calvo (1988). Default

costs may arise from losing credit market access for some time, obstacles to conducting

international trade, difficulties in borrowing in the domestic market, etc., while default

benefits include immediate debt relief.

To accommodate this interpretation, we introduce a variable vit that triggers default if

vit exceeds a threshold value cit. The variable vit captures the time-varying changes in the

difference between the perceived benefits and cost of default for sovereign i at time t. Since

a cost, or penalty, can always be recast in terms of a benefit, we incur no loss of generality

if we focus on a model with time-varying benefits of default and fixed costs, or vice versa,

see Calvo (1988). The vits, i = 1, . . . , n, are linked together via a Generalized Hyperbolic
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Skewed Student’s t (GHST) copula,

vit = (ςt − µς)L̃itγ +
√
ςtL̃itϵt, i = 1, . . . , n, (1)

where ϵt ∈ Rn is a vector of standard normally distributed risk factors, L̃t is an n×n matrix

of risk factor sensitivities, and γ ∈ Rn is a vector controlling the skewness of the copula.

The random scalar ςt ∈ R+ is assumed to be an inverse-Gamma distributed risk factor that

affects all sovereigns simultaneously, where ςt and ϵt are independent, and µς = E[ςt]. The

GHST model can be further generalized to the GH model by assuming a generalized inverse

Gaussian distribution for ςt, see McNeil et al. (2005). The current simpler GHST model,

however, already accounts for all the empirical features in the CDS data at hand, including

skewness and fat tails.

Default dependence in model (1) stems from two sources: common exposures to the

normally distributed risk factors ϵt as captured by the time-varying matrix L̃t; and a common

exposure to the scalar risk factor ςt. The former captures spillover effects throught the

correlations, while the latter captures such effects through the tail-dependence of the copula.

To see this, note that if ςt is non-random, the first term in (1) drops out of the equation

and there is zero tail dependence. Conversely, if ςt is large, all sovereigns are affected at the

same time, making joint defaults of two or more sovereigns more likely.

The probability of default pit of sovereign i at time t is given by

pit = Pr[vit > cit] = 1− Fi(cit) ⇔ cit = F−1
i (1− pit), (2)

where Fi(·) is the cumulative distribution function of vit. In our case, Fi(·) is the univariate

GHST distribution, which follows directly from the mean-variance mixture construction in

equation (1). Our main interest, however, is not in the marginal default probability pit,

but rather in the joint default probability Pr[vit > cit , vjt > cjt] or the conditional default

probability Pr[vit > cit | vjt > cjt], for i ̸= j. The (market implied) marginal default

probabilities are typically estimated directly from CDS market data under a number of
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simplifying assumptions. We follow this practice. First, we fix the recovery rate at a stressed

level of reci = 25% for all countries and use the 6 months LIBOR rate as the discount rate

rt. We assume that the premium payments occur continuously, such that the standard CDS

pricing formula as in for example Hull and White (2000) simplifies and can be inverted to

extract the market-implied probability of default pit. The relation is given by

pit =
sit × (1 + rt)

1− reci
, (3)

where sit is the CDS spread for sovereign i at time t, and rt is our discount rate; see also

Brigo and Mercurio (2006, Chapter 21) and Segoviano and Goodhart (2009).

Given our market implied estimates of the default probabilities, we can make use of our

multivariate model in (1) to infer the magnitude and time-variation in joint and conditional

default probabilities. To do this, we proceed in two simple steps. In the first step, we

estimate the dependence structure in (1) from observed CDS data as explained in Section 3,

and we infer the threshold values cit by inverting the univariate GHST distributions using

our market implied estimates of the default probabilities. In the second step, we then use

the calibrated thresholds cit and the estimated dependence structure of the vits to simulate

joint and conditional default probabilities. We show in Section 4 how the combination of

marginal default probilities calibrated to current CDS spread levels with the time-varying

copula structure in (1) can lead to new insights into sovereign credit spread spillovers.

3 Statistical model

3.1 Generalized Autoregressive Score dynamics

As mentioned in Section 2, we use sovereign CDS spreads to estimate the time-varying de-

pendence structure in (1) and to calibrate the model’s marginal default probabilities through

equation (3). The statistical model, therefore, closely follows the set-up of the previous sec-

tion while allowing for time variation in the parameters using the Generalized Autoregressive
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Score dynamics of Creal, Koopman, and Lucas (2012).

We assume that we observe a vector yt ∈ Rn, t = 1, . . . , T , of changes in sovereign CDS

spreads for sovereign i = 1, . . . , n, where

yt = µ+ Ltet, (4)

with µ ∈ Rn a vector of fixed unknown means, and et a GHST distributed random variable

with zero mean, ν degrees of freedom, skewness parameter γ, and covariance matrix I.

Equation (4) is the empirical counterpart to (1). To ease the notation, we set µ = 0 in the

remaining exposition. For µ ̸= 0, all derivations go through if yt is replaced by yt − µ. The

density of yt is denoted by

p(yt; Σ̃t, γ, ν) =
ν

ν
2 21−

ν+n
2

Γ(ν
2
)π

n
2 |Σ̃t|

1
2

·
K ν+n

2

(√
d(yt) · (γ′γ)

)
eγ

′L̃−1
t (yt−µ̃t)

d(yt)
ν+n
4 · (γ′γ)−

ν+n
4

, (5)

d(yt) = ν + (yt − µ̃t)
′Σ̃−1

t (yt − µ̃t), (6)

µ̃t = − ν

ν − 2
L̃tγ, (7)

where ν > 4 is the degrees of freedom parameter, µ̃t is the location vector, and Σ̃t = L̃tL̃
′
t is

the scale matrix,

L̃t = LtT, (8)

(T ′T )−1 =
ν

ν − 2
I +

2ν2

(ν − 2)2(ν − 4)
γγ′, (9)

and Ka(b) is the modified Bessel function of the second kind. The matrix Lt characterizes

the time-varying covariance matrix Σt = LtL
′
t. We consider the standard decomposition

Σt = LtL
′
t = DtRtDt, (10)

where Dt is a diagonal matrix containing the time-varying volatilities of yt, and Rt is the

time-varying correlation matrix.

The fat-tailedness and skewness of the CDS data yt creates challenges for standard dy-

namic specifications of volatilities and correlations, such as standard GARCH or DCC type
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dynamics, see Engle (2002). In the presence of fat tails, large absolute observations yit occur

regularly even if volatility is not changing rapidly. If not properly accounted for, such obser-

vations lead to biased estimates of the dynamic behavior of volatilities and correlations. The

Generalized Autoregressive Score (GAS) framework of Creal, Koopman, and Lucas (2012) as

applied in Zhang, Creal, Koopman, and Lucas (2011) to the case of GHST distributions pro-

vides a coherent approach to deal with such settings. The GAS model creates an explicit link

between the distribution of yt and the dynamic behavior of Σt, Lt, Dt, and Rt. In particular,

if yt is fat-tailed, observations that lie far outside the center automatically have less impact

on future values of the time-varying parameters in Σt. The same holds for observations in the

left-hand tail if yt is left-skewed. The intuition for this is that the score dynamics attribute

the effect of a large observation yt partly to the distributional properties of yt and partly

to a local increase of volatilities and/or correlations. The estimates of dynamic volatilities

and correlations thus become more robust to incidental influential observations, which are

prevalent in the CDS data used in our empirical analysis. We refer to Creal, Koopman, and

Lucas (2011) and Zhang, Creal, Koopman, and Lucas (2011) for more details.

We assume that the time-varying covariance matrix Σt is driven by a number of unob-

served dynamic factors ft, or Σt = Σ(ft) = L(ft)L(ft)
′. The number of factors coincides

with the number of free elements in Σt in our empirical application later on, but may also be

smaller. The dynamics of ft are specified using the GAS framework for GHST distributed

random variables and are given by

ft+1 = ω +

p−1∑
i=0

Aist−i +

q−1∑
j=0

Bjft−j; (11)

st = St∇t, (12)

∇t = ∂ ln p(yt; Σ̃(ft), γ, ν)/∂ft, (13)

where ∇t is the score of the GHST density with respect to ft, Σ̃(ft) = L(ft)TT
′L(ft)

′, ω is

a vector of fixed intercepts, Ai and Bj are appropriately sized fixed parameter matrices, St
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is a scaling matrix for the score ∇t, and ω = ω(θ), Ai = Ai(θ), and Bj = Bj(θ) all depend

on a static parameter vector θ. Typical choices for the scaling matrix St are the unit matrix

or inverse (powers) of the Fisher information matrix It−1, where

It−1 = E [∇t∇′
t| yt−1, yt−2, . . .] .

For example, St = I−1
t−1 accounts for the curvature in the score ∇t.

For appropriate choices of the distribution, the parameterization, and the scaling matrix,

the GAS model (11)–(13) encompasses a wide range of familiar models such as the (mul-

tivariate) GARCH model, the autoregressive conditional duration (ACD) model, and the

multiplicative error model (MEM); see Creal, Koopman, and Lucas (2012) for more exam-

ples. Details on the parameterization Σt = Σ(ft), Dt = D(ft), and Rt = R(ft), and the

scaling matrix St used in our empirical application can be found in the appendix.

Using the GHST specification in equation (5), the appendix shows that

∇t = Ψ′
tH

′
tvec

(
wt · yty′t − Σ̃t −

(
1− ν

ν − 2
wt

)
L̃tγy

′
t

)
, (14)

where wt is a scalar weight function that decreases in the Mahalanobis distance of yt from

its center µ̃t as defined in (6). The matrices Ψt and Ht are time-varying, parameterization

specific and depend on ft, but not on the data. Due to the presence of wt in (14), observations

that are far out in the tails receive a smaller weight and therefore have a smaller impact

on future values of ft. This robustness feature is directly linked to the fat-tailed nature of

the GHST distribution and allows for smoother correlation and volatility dynamics in the

presence of heavy-tailed observations (i.e., ν < ∞).

For skewed distributions (γ ̸= 0), the score in (14) shows that positive CDS changes have

a different impact on correlation and volatility dynamics than negative ones. As explained

earlier, this aligns with the intuition that CDS changes from for example the left tail are

less informative about changes in volatilities and correlations if the (conditional) observa-

tion density is itself left-skewed. For the symmetric Student’s t case, we have γ = 0 and
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the asymmetry term in (14) drops out. If furthermore the fat-tailedness is ruled out by

considering ν → ∞, one can show that the weights wt tend to 1 and that ∇t collapses to

the intuitive form for a multivariate GARCH model, ∇t = Ψ′
tH

′
tvec(yty

′
t − Σt).

3.2 Parameter estimation

The parameters of the dynamic GHST model can be estimated by standard maximum like-

lihood procedures as the likelihood function is known in closed form using a standard pre-

diction error decomposition. The joint estimation of all parameters in the model, however,

is rather cumbersome. Therefore, we split the estimation in two steps relating to (i) the

marginal behavior of the coordinates yit and (ii) the joint dependence structure of the vector

of standardized residuals D−1
t yt. Similar two-step procedures can be found in Engle (2002),

Hu (2005), and other studies that are based on a multivariate GARCH framework.

In the first step, we estimate a dynamic GHST model for each series yit separately using

a GAS(1,1) dynamic specification with p = q = 1 and taking our time-varying parameter

ft as the log-volatility log(σit). The skewness parameter γi is also estimated for each series

separately, while the degrees of freedom parameter ν is fixed at a pre-determined value.

This restriction ensures that the univariate GHST distributions are the marginal distribu-

tions from the multivariate GHST distribution and that the model is therefore internally

consistent.

In the second step, we consider the standardized data zit = yit/σ̂it, where σ̂it are obtained

from the first step. Using zt = (z1t, . . . , znt)
′, we estimate a multivariate dynamic GHST

model using again a GAS(1,1) dynamic specification. The GHST distribution in this second

step has mean zero, skewness parameters γ̂i, i = 1, . . . , n, as estimated in the first step,

the same pre-determined value for ν, and covariance matrix cov(zt) = Rt = R(ft), where

ft contains the spherical coordinates of the choleski decomposition of the correlation matrix

Rt; see the appendix for further details.
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The advantages of the two-step procedure for computational efficiency are substantial,

particularly if the number n of time series considered in yt is large. The univariate models

of the first step can be estimated at low computational cost. Using these estimates, the uni-

variate dynamic GHST models are used as a filter to standardize the individual CDS spread

changes. In the second step, only the parameters that determine the dynamic correlations

remain to be estimated.

4 Empirical application: euro area sovereign risk

4.1 CDS data

We compute joint and conditional probabilities of failure for a set of ten countries in the

euro area. We focus on sovereigns that have a CDS contract traded on their reference bonds

since the beginning of our sample in January 2008. We select ten countries: Austria (AT),

Belgium (BE), Germany (DE), Spain (ES), France (FR), Greece (GR), Ireland (IE), Italy

(IT), the Netherlands (NL) and Portugal (PT). CDS spreads are available for these countries

at a daily frequency from January 1, 2008 to June 30, 2011, yielding T = 913 observations.

The CDS contracts have a five year maturity. They are denominated in U.S. dollars and

therefore do not depend on foreign exchange risk concerns should a European credit event

materialize. Such contracts are also far more liquidly traded than their Euro denominated

counterparts. All time series data are obtained from Bloomberg. We prefer CDS spreads to

bond yield spreads as a measure of sovereign default risk since the former are less affected

by liquidity and flight-to-safety issues, see for example Pan and Singleton (2008) and Ang

and Longstaff (2011). In addition, our CDS series are likely to be less affected than bond

yields by the outright government bond purchases that might have taken place under the

Securities Markets Program during the second half of our sample, see Section 4.5 below.

Table 1 provides summary statistics for daily de-meaned changes in these ten CDS
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spreads. All time series have significant non-Gaussian features under standard tests and

significance levels. In particular, we note the non-zero skewness and large values of kurtosis

for almost all time series in the sample. All series are covariance stationary according to

standard unit root (ADF) tests.

4.2 Marginal and joint risk

We model the CDS spread changes with the framework explained in Section 3 based on the

dynamic GHST sprecification (11). We consider three different choices for the parameters,

corresponding to a Gaussian, a Student-t, and a GHST distribution, respectively. We treat

the degrees of freedom parameter ν as a robustness parameter; compare Franses and Lucas

(1998). This implies we fix the degrees of freedom at ν = 5 rather than estimating it. The

advantage of such an approach is that it further simplifies the estimation process, while

retaining many of the robustness features of model (11). In particular, fixing ν at ν = 5

may seem high at first sight given some of the high kurtosis values in Table 1. The value is

small enough, however, to result in a substantial robustification of the results via the weights

wt in (14), both in terms of likelihood evaluation as well as in terms of the volatility and

correlation dynamics.

Figure 1 plots estimated volatility levels for the three different models along with the

squared CDS changes. The assumed statistical model (Gaussian, Student-t, GHST) directly

influences the volatility estimates. The volatilities from the univariate Gaussian models

repeatedly seem to be too high. The thin tails of the Gaussian distribution imply that

volatility increases sharply in response to a jump in the CDS spread, see for example the

Spanish CDS spread around April 2008, and many countries around Spring 2010. In par-

ticular, the magnitude of the increase in volatility appears too large when compared to the

subsequent squared CDS spread changes. The volatility estimates based on the Student-t

and GHST distribution change less abruptly after incidental large changes than the Gaus-

sian ones due to the weighting mechanism in (14). The results for the Student-t and GHST

13



are very similar and in line with the subsequent squared changes in CDS spreads. Some

differences are visible for the series that exhibit significant skewness, such as the time series

for Greece, Spain, and Portugal.

Table 2 reports the parameter estimates for the ten univariate country-specific models. In

all cases, volatility is highly persistent, i.e., B is close to one. Note that the parameterization

of our score driven model is different than that of a standard GARCH model. In particular,

the persistence is completely captured by B rather than by A + B as in the GARCH case.

Also note that ω sometimes takes on negative values. This is natural as we define ft to be

the log-volatility rather than the volatility itself.

Next, we estimate the dynamic correlation coefficients for the standardized CDS spread

changes. Given n = 10, there are 45 different elements in the correlation matrix. Figure 2

plots the average correlation, averaged across 45 time varying bivariate pairs, for each model

specification. As a robustness check, we benchmark each multivariate model-based estimate

to the average over 45 correlation pairs obtained from a 60 business days rolling window.

Over each window we use the same pre-filtered marginal data as for the multivariate model

estimates.

If we compare the correlation estimates across the different specifications, the GHST

model matches the rolling window estimates most closely. Rolling window and GHST cor-

relations are low in the beginning of the sample at around 0.3 and increase to around 0.75

during 2010 and 2011. In the beginning of the sample the GHST-based average correlation

is lower than that implied by the two alternative specifications. The pattern reverses in the

second half of the sample. This result is in line with correlations that tend to increase during

times of stress.

The correlation estimates vary considerably over time across all model specifications con-

sidered. Estimated dependence across euro area sovereign risk increases sharply for the first

time around September 15, 2008, on the day of the Lehman failure, and around September
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Figure 2: Average correlation over time
Plots of the estimated average correlation over time, where averaging takes place over 45 estimated correlation

coefficients. The correlations are estimated based on different parametric assumptions: Gaussian, symmetric

t, and GH Skewed-t (GHST). The time axis runs from March 2008 to June 2011. The corresponding rolling

window correlations are each estimated using a window of sixty business days of pre-filtered CDS changes.

The bottom-right panel collects four series for comparison.
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30, 2008, when the Irish government issued a blanket guarantee for all deposits and borrow-

ings of six large financial institutions. Average GHST correlations remain high afterwards,

around 0.75, until around May 10, 2010. At this time, euro area heads of state introduced a

rescue package that contained government bond purchases by the ECB under the so-called

Securities Markets Program, and the European Financial Stability Facility, a fund designed

to provide financial assistance to euro area states in economic difficulties. After an eventual

decline to around 0.6 towards the end of 2010, average correlations increase again towards

the end of the sample.

The parameter estimates for volatility and correlations are shown in Table 2. Unlike the

raw sample skewness, the estimated skewness parameters are all positive, indicating a fatter

right tail of the distribution of CDS changes. The negative raw skewness may be the result of

several influential outliers. These are accommodated in a model specification with fat-tails.

4.3 Joint probabilities of Eurozone financial stress

This section reports marginal and joint risk estimates that pertain to euro area sovereign

default. First, Figure 3 plots estimates of CDS-implied probabilities of default (pd) over a

one year horizon based on (3). These are directly inferred from CDS spreads, and do not

depend on parametric assumptions regarding their joint distribution. Market-implied pd’s

range from around 1% for Germany and the Netherlands to above 10% for Greece, Portugal,

and Ireland at the end of our sample.

The top panel of Figure 4 tracks the market-implied probability of two or more failures

among the ten euro area sovereigns in the portfolio over a one year horizon. The joint failure

probability is calculated by simulation, using 50,000 draws at each time t. This simple

estimate combines all marginal and joint failure information into a single time series plot

and reflects the deterioration of debt conditions since the beginning of the Eurozone crisis.

The overall dynamics are roughly similar across the different distributional specifications.

The probability of two or more failures over a one year horizon, as reported in Figure

17



Table 1: CDS descriptive statistics
The summary statistics correspond to daily changes in observed sovereign CDS spreads for ten euro area

countries from January 2008 to June 2011. Mean, Median, Standard Deviation, Minimum and Maximum

are multiplied by 100. Almost all skewness and excess kurtosis statistics have p-values below 10−4, except

the skewness parameters of France and Ireland.

Mean Median Std.Dev. Skewness Kurtosis Minimum Maximum
Austria 0.00 0.00 0.05 1.07 18.74 -0.27 0.42
Belgium 0.00 0.00 0.04 0.33 8.29 -0.21 0.27
Germany 0.00 0.00 0.02 0.41 7.98 -0.09 0.10
Spain 0.00 0.00 0.08 -0.71 18.47 -0.79 0.50
France 0.00 0.00 0.02 0.14 6.38 -0.11 0.11
Greece 0.00 -0.02 0.30 -0.31 46.81 -3.64 2.91
Ireland 0.00 -0.01 0.12 0.02 9.13 -0.79 0.55
Italy 0.00 0.00 0.07 -0.82 25.54 -0.77 0.45
Netherlands 0.00 0.00 0.02 1.62 19.59 -0.10 0.24
Portugal 0.00 -0.01 0.13 -2.60 51.49 -1.85 0.74

2008 2009 2010 2011

0.01

0.03
Austria 

2008 2009 2010 2011

0.01

0.03 Belgium 

2008 2009 2010 2011

0.005

0.015 Germany 

2008 2009 2010 2011

0.02

0.04 Spain 

2008 2009 2010 2011

0.005

0.015 France 

2008 2009 2010 2011

0.1

0.3 Greece 

2008 2009 2010 2011

0.05

0.10 Ireland 

2008 2009 2010 2011

0.01

0.03
Italy 

2008 2009 2010 2011

0.01

0.02 Netherlands 

2008 2009 2010 2011

0.05

0.10 Portugal 

Figure 3: Implied marginal failure probabilities from CDS markets
The risk neutral marginal probabilities of failure for ten euro area countries extracted from CDS markets.

The time axis is from January 2008 to June 2011.
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Table 2: Model parameter estimates
The table reports parameter estimates that pertain to three different model specifications. The sample

consists of daily changes from January 2008 to June 2011. The degree of freedom parameter ν is set to five

for the t distributions. Parameters in γ are estimated in the marginal distributions.

AT BE DE ES FR GR IE IT NL PT Correlation

Gaussian

A 0.06 0.10 0.08 0.15 0.11 0.12 0.08 0.11 0.08 0.16 0.02
(0.00) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.00)

B 0.99 0.98 0.97 0.94 0.97 0.99 0.96 0.99 0.97 0.99 0.96
(0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01)

ω -0.03 -0.07 -0.14 -0.18 -0.12 0.00 -0.09 0.00 -0.11 0.00 1.00
(0.01) (0.02) (0.03) (0.02) (0.03) (0.00) (0.01) (0.00) (0.03) (0.00) (0.00)

t

A 0.28 0.30 0.35 0.39 0.40 0.42 0.30 0.34 0.26 0.36 0.01
(0.07) (0.31) (0.31) (0.18) (0.68) (0.00) (0.22) (0.17) (0.04) (0.04) (0.00)

B 0.99 0.98 0.95 0.98 0.96 0.98 0.99 0.98 0.97 0.99 0.99
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ω 0.07 0.05 -0.07 0.09 0.00 0.14 0.09 0.08 -0.02 0.11 1.01
(0.38) (1.62) (2.03) (0.79) (4.14) (0.00) (0.84) (0.82) (0.28) (0.15) (0.01)

GHST

A 0.13 0.15 0.21 0.16 0.22 0.17 0.14 0.16 0.16 0.15 0.01
(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.00)

B 0.99 0.98 0.93 0.98 0.95 0.97 0.98 0.98 0.96 0.98 0.99
(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

ω -0.04 -0.08 -0.29 -0.05 -0.18 -0.05 -0.05 -0.05 -0.18 -0.05 1.05
(0.02) (0.03) (0.07) (0.03) (0.05) (0.02) (0.02) (0.03) (0.05) (0.02) (0.01)

γ 0.11 0.17 0.04 0.12 0.12 0.35 0.22 0.10 0.06 0.29 -
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) -
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Figure 4: Probability of two or more failures
The top panel plots the time-varying probability of two or more failures (out of ten) over a one-year hori-

zon. Estimates are based on different distributional assumptions regarding marginal risks and multivariate

dependence: Gaussian, symmetric-t, and GH skewed-t (GHST). The bottom panel plots model-implied

probabilities for n∗ sovereign failures over a one year horizon, for n∗ = 0, 1, 2, 3.
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4, starts to pick up in the weeks after the Lehman failure and the Irish blanket guarantee

in September 2008. The joint probability estimate peaks in the first quarter of 2009, at

the height of the Irish debt crisis, then decreases until the third quarter of 2009. It is

increasing since then until the end of the sample. The joint probability decreases sharply,

but only temporarily, around the May 10, 2010 announcement of the the European Financial

Stability Facility and the European Central Bank’s intervention in government debt markets

starting at around the same time. We come back to this later.

In the beginning of our sample, the joint failure probability from the GHST model is

higher than that from the Gaussian and symmetric-t model. This pattern reverses towards

the end of the sample, when the Gaussian and symmetric-t estimates are slightly higher

than the GHST estimate. Towards the end of the sample, the joint probability measure is

heavily influenced by the possibility of a credit event in Greece and Portugal. The CDS

changes for each of these countries are positively skewed, i.e., have a longer right tail. As

the crisis worsens, we observe more frequent positive and extreme changes, which increase

the volatility in the symmetric models more than in the skewed setting. Higher volatility

translates into higher marginal risk, or lower estimated default thresholds. This explains the

(slightly) different patterns in the estimated probabilities of joint failures.

The bottom panel in Figure 4 plots the probability of a pre-specified number of failures.

The lower level of our GHST joint failure probability in the top panel of Figure 4 towards

the end of the sample is due to the higher probability of no defaults in that case. Altogether,

the level and dynamics in the estimated measures of joint failure from this section do not

appear to be very sensitive to the precise model specification.

4.4 Spillover measures: What if . . . failed?

This section investigates conditional probabilities of failure. Such conditional probabilities

relate to questions of the “what if?” type and reveal which countries may be most vulnerable

to the failure of a given other country. We condition on a credit event in Greece to illustrate
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our general methodology. We pick this case since it has by far the highest market-implied

probability of failure at the end of our sample period. To our knowledge, this is the first

attempt in the literature on evaluating the spill-over effects and conditional probability of

sovereign failures. Clearly, conditioning on a credit event is different from conditioning on

incremental changes in other countries’ risks, see Caceres, Guzzo, and Segoviano (2010) and

Caporin, Pelizzon, Ravazzolo, and Rigobon (2012).

Figure 5 plots the conditional probability of default for nine euro area countries if Greece

defaults. We distinguish four cases, i.e., Gaussian dependence, symmetric-t, GHST, and

GHST with zero correlations. The last experiment is included to disentangle the effect of

correlations and tail dependence, see our discussion below equation (1). Regardless of the

parametric specification, Ireland and Portugal seem to be most affected by a Greek failure,

with conditional probabilities of failure of around 30%. Other countries may be perceived as

more ‘ring-fenced’ as of June 2011, with conditional failure probabilities below 20%. The level

and dynamics of the conditional estimates are sensitive to the parametric assumptions. The

conditional default probability estimates are highest in the GHST case. The symmetric-

t estimates in turn are higher than those obtained under the Gaussian assumption. The

bottom right panel of Figure 5 demonstrates that even if the correlations are put to zero, the

GHST still shows extreme dependence due to the mixing variable ςt in (1). The correlations

and mixing construction thus operate together to capture the dependence in the data.

Figure 6 plots the pairwise correlation estimates for Greece with each of the remaining

nine euro area countries. The estimated correlations for the GHST model are higher than

for the other two models in the second half of the sample. This is consistent with the

higher level of conditional probabilities of default in the GHST case compared to the other

distributional assumptions, as discussed above for Figure 4. Interestingly, the dynamic

correlation estimates of euro area countries with Greece increased most sharply in the first

half of 2009. These are the months before the media attention focused on the Greek debt
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Figure 5: Conditional probabilities of failure given that Greece fails
Plots of annual conditional failure probabilities for nine euro area countries given a Greek failure. We

distinguish estimates based on a Gaussian dependence structure, symmetric-t, GH skewed-t (GHST), and a

GHST with zero correlations.
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crisis, which was more towards the end of 2009 up to Spring 2010.

Figure 7 plots the difference between the conditional probability of failure of a given

country given that Greece fails and the respective conditional probability of failure given

that Greece does not fail. We refer to this difference as a spillover component or contagion

effect as the differences relate to the question whether CDS markets perceive any spillovers

from a potential Greek default to the likelihood of other euro area countries failing. The

level of estimated spillovers are substantial. For example, the difference in the conditional

probability of a Portuguese failure given that Greece does or does not fail, is about 25%. The

spillover estimates do not appear to be very sensitive to the different parametric assumptions.

In all cases, Portugal and Ireland appear the most vulnerable to a Greek default since around

mid-2010.

The conditional probabilities can be scaled by the time-varying marginal probability of

a Greek failure to obtain pairwise joint failure risks. These joint risks are increasing towards

the end of the sample and are higher in 2011 than in the second half of 2009. Annual joint

probabilities for nine countries are plotted in Figure 8. For example, the risk of a joint failure

over a one year horizon of both Portugal and Greece, as implied by CDS markets, is about

10% at the end of our sample.

4.5 Event study: the May 9, 2010 rescue package and risk depen-
dence

During a weekend meeting on May 8–9, 2010, euro area heads of state agreed on a com-

prehensive rescue package to mitigate sovereign risk conditions and perceived risk contagion

in the Eurozone. This section analyses the impact of the resulting simultaneous announce-

ment of the European Financial Stability Facility (EFSF) and the ECB’s Securities Markets

Program (SMP) on euro area joint risk and conditional risk as implied by our empirical

model. We do so by comparing CDS-implied risk conditions closely before and after the

announcement of May 9, 2010.
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Figure 6: Dynamic correlation of euro area countries with Greece
The time-varying bivariate correlation pairs for nine euro area countries and Greece. The correlation es-

timates are obtained from the ten-dimensional multivariate model with a Gaussian, symmetric-t, and GH

skewed-t (GHST) dependence structure, respectively.
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Figure 7: Risk spillover components
The difference between the (simulated) probability of failure of i given that Greece fails and the probability

of failure of i given that Greece does not fail. The underlying distributions are multivariate Gaussian,

symmetric-t, and GH skewed-t (GHST), respectively.
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Figure 8: Joint default risk with Greece
The time-varying probability of two simultaneous credit events in Greece and a given other euro area country.

The estimates are obtained from a multivariate model based on a Gaussian, symmetric-t, and GH skewed-t

(GHST) density, respectively.
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The agreed upon rescue fund, the European Financial Stability Facility (EFSF), is a

limited liability facility with an objective to preserve financial stability of the euro area by

providing temporary financial assistance to euro area member states in economic difficulties.

Initially committed funds were 440bn Euro. The announcement made clear that EFSF funds

can be combined with funds raised by the European Commission of up to 60bn Euro, and

funds from the International Monetary Fund of up to 250bn Euro, for a total safety net up

to 750bn Euro.

A second key component of the May 9, 2010 package consisted of the ECB’s government

bond buying program, the SMP. Specifically, the ECB announced that it would start to

intervene in secondary government bond markets to ensure depth and liquidity in those

market segments that are qualified as being dysfunctional. These purchases were meant

to restore an appropriate transmission of monetary policy actions targeted towards price

stability in the medium term. The SMP interventions were almost always sterilized through

additional liquidity-absorbing operations.

The joint impact of the May 9, 2010 announcement of the EFSF and SMP as well as of

the initial bond purchases on joint risk estimates can be seen in the top panel of Figure 4.

The figure suggests that the probability of two or more credit events in our sample of ten

countries decreases from about 7% to approximately 3% before and after the May 9, 2010

announcement. Figure 3 indicates that marginal risks decreased considerably as well. The

graphs also suggest that these decreases were temporary. The average correlation plots in

Figure 2 do not suggest a wide-spread and prolonged decrease in dependence. Instead, there

seems to be an up-tick in average correlations. Overall, the evidence so far suggest that

the announcement of the policy measures and initial bond purchases may have substantially

lowered joint risks, but not necessarily through a decrease in joint dependence.

To further investigate the impact on joint and conditional sovereign risk from actions

communicated on May 9, 2010 and implemented shortly afterwards, Table 3 reports model-
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based estimates of joint and conditional risk. We report our risk estimates for two dates,

Thursday May 6, 2010 and Tuesday May 11, 2011, i.e., two days before and after the an-

nounced change in policy. The top panel of Table 3 confirms that the joint probability of a

credit event in, say, both Portugal and Greece, or Ireland and Greece, declines from 4.8% to

2.3% and 3.1% to 1.8%, respectively. These are large decreases in joint risk. For any country

in the sample, the probability of that country failing simultaneously with Greece or Portugal

over a one year horizon is substantially lower after the May 9, 2010 policy announcement

than before.

The bottom panel of Table 3, however, indicates that the decrease in joint failure prob-

abilities is generally not due to a decline in failure dependence. Instead, the conditional

probabilities of a credit event in for example Greece or Ireland given a credit event in Portu-

gal increases from 78% to 80% and from 43% to 49%, respectively. Similarly, the conditional

probability of a credit event in Belgium or Ireland given a credit event in Greece increases

from 10% to 15% and from 23% to 26%, respectively.

As a bottom line, based on the initial impact of the two policy measures on CDS prices,

our analysis suggests that the two policies may have been perceived to be less of a ‘firewall’ or

‘ringfence’ measure, i.e., intended to lower the impact and spread of an adverse development

should it actually occur. Rather, markets perceived the measures much more as a means

to affect the probability of individual adverse outcomes downwards, but without decreasing

dependence. These findings are robust to, for example, alternative choices for the degrees of

freedom parameter ν in the copula, and different choices for the expected recovery rate in

case of defaults.

5 Conclusion

We have proposed a novel empirical framework to assess the likelihood of joint and con-

ditional failure for euro area sovereigns. Our methodology is novel in that our joint risk
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Table 3: Joint and conditional failure probabilities
The top and bottom panels report model-implied joint and conditional probabilities of a credit event for a

subset of countries, respectively. For the conditional probabilities Pr(i failing | j failed), the conditioning

events j are in the columns (PT, GR, DE), while the events i are in the rows (AT, BE, . . . , PT). Avg

contains the averages for each column.

Joint risk, Pr(i and j failing)

Thu May 6, 2010 Tue May 11, 2010

PT GR DE PT GR DE

AT 1.1% 1.1% 0.6% 0.6% 0.7% 0.4%

BE 1.2% 1.4% 0.7% 0.9% 1.0% 0.6%

DE 1.0% 1.1% 0.8% 0.8%

ES 3.0% 3.3% 0.9% 1.5% 1.6% 0.6%

FR 1.0% 1.0% 0.6% 0.8% 0.9% 0.6%

GR 4.8% 1.1% 2.3% 0.8%

IR 2.6% 3.1% 0.8% 1.4% 1.8% 0.6%

IT 2.8% 2.9% 0.9% 1.4% 1.5% 0.6%

NL 0.9% 0.9% 0.5% 0.6% 0.7% 0.5%

PT 4.8% 1.0% 2.3% 0.8%

Avg 2.0% 2.2% 0.8% 1.1% 1.2% 0.6%

Conditional risk, Pr(i failing | j failed)

Thu May 6, 2010 Tue May 11, 2010

PT GR DE PT GR DE

AT 17% 8% 52% 22% 10% 46%

BE 20% 10% 60% 32% 15% 61%

DE 16% 8% 26% 12%

ES 49% 25% 78% 50% 23% 63%

FR 16% 8% 58% 28% 12% 62%

GR 78% 99% 80% 86%

IR 43% 23% 75% 49% 26% 68%

IT 45% 22% 77% 49% 21% 64%

NL 14% 7% 49% 21% 10% 50%

PT 36% 91% 33% 81%

Avg 33% 17% 71% 40% 18% 64%
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measures are derived from a multivariate framework based on a dynamic Generalized Hy-

perbolic skewed-t (GHST) density that naturally accommodates skewed and heavy-tailed

changes in marginal risks as well as time variation in volatility and multivariate dependence.

When applying the model to euro area sovereign CDS data from January 2008 to June 2011,

we find significant time variation in risk dependence, as well as considerable spillover effects

in the likelihood of sovereign failures. We also documented how parametric assumptions,

including assumptions about higher order moments, matter for joint and conditional risk

assessments. Using the May 9, 2010 new policy measures of the European heads of state,

we illustrated how the model contributes to our understanding of market perceptions about

specific policy measures.
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Appendix: the dynamic GH skewed-t (GHST) model

The Generalized Autoregressive Score model of Creal et al. (2011, 2012) for the GH skewed-t
(GHST) density (5) adjusts the time-varying parameter ft at every step using the scaled score of
the density at time t. This can be regarded as a steepest ascent improvement of the parameter
using the local (at time t) likelihood fit of the model. Under the correct specification of the model,
the scores form a martingale difference sequence.

We partition ft as ft = (fv
t , f

c
t ) for the (diagonal) matrix D2

t = D(fv
t )

2 of variances and corre-
lation matrix Rt = R(f c

t ), respectively, where Σt = DtRtDt = Σ(ft). We set fv
t = ln(diag(D2

t )),
which ensures that variances are always positive, irrespective of the value of fv

t . For the correlation
matrix, we use the hypersphere transformation also used in Creal et al. (2011) and Zhang et al.
(2011). This ensures that Rt is always a correlation matrix, i.e., positive semi-definite with ones on
the diagonal. We set Rt = R(f c

t ) = XtX
′
t, with f c

t as a vector containing n(n− 1)/2 time-varying
angles ϕijt ∈ [0, π] for i > j, and

Xt =



1 c12t c13t · · · c1nt
0 s12t c23ts13t · · · c2nts1nt
0 0 s23ts13t · · · c3nts2nts1nt
0 0 0 · · · c4nts3nts2nts1nt
...

...
...

. . .
...

0 0 0 · · · cn−1,nt
∏n−2

ℓ=1 sℓnt
0 0 0 · · ·

∏n−1
ℓ=1 sℓnt


, (A1)

where cijt = cos(ϕijt) and sijt = sin(ϕijt). The dimension of f c
t thus equals the number of correlation

pairs.
As implied by equation (13), we take the derivative of the log-density with respect to ft, and

obtain

∇t =
∂vech(Σt)

′

∂ft

∂vech(Lt)
′

∂vech(Σt)

∂vec(L̃t)
′

∂vech(Lt)

∂ ln pGH(yt|ft)
∂vec(L̃t)

(A2)

= Ψ′
tH

′
t

(
wt(yt ⊗ yt)− vec(Σ̃t)− (1− ν

ν − 2
wt)(yt ⊗ L̃tγ)

)
(A3)

= Ψ′
tH

′
tvec

(
wtyty

′
t − Σ̃t − (1− ν

ν − 2
wt)L̃tγy

′
t

)
, (A4)

Ψt = ∂vech(Σt)/∂f
′
t, (A5)

Ht = (Σ̃−1
t ⊗ Σ̃−1

t )(L̃t ⊗ I)
(
(T ′ ⊗ In)D0

n

) (
Bn (In2 + Cn) (Lt ⊗ In)D0

n

)−1
, (A6)

wt =
ν + n

2 · d(yt)
−

k′(ν+n)/2

(√
d(yt) · γ′γ

)
√
d(yt)/γ′γ

, (A7)

where k′a(b) = ∂ lnKa(b)/∂b is the derivative of the log modified Bessel function of the second kind,
D0

n is the the duplication matrix vec(L) = D0
nvech(L) for a lower triangular matrix L, Dn is the

standard duplication matrix for a symmetric matrix S vec(S) = Dnvech(S), Bn = (D′
nDn)

−1D′
n,

and Cn is the commutation matrix, vec(S′) = Cnvec(S) for an arbitrary matrix S. For completeness,
we mention that L̃t = LtT , Σ̃t = L̃tL̃

′
t, and

(T ′T )−1 =
ν

ν − 2
I +

2ν2

(ν − 2)2(ν − 4)
γγ′.

To scale the score ∇t, Creal, Koopman, and Lucas (2012) propose the use of powers of the
inverse information matrix. The information matrix for the GHST distribution, however, does not
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have a tractable form. Therefore, we scale by the information matrix of the symmetric Student’s t
distribution,

St =
{
Ψ′(I⊗ L̃−1

t )′[gG− vec(I)vec(I)′](I⊗ L̃−1
t )Ψ

}−1
, (A8)

where g = (ν + n)(ν + 2 + n), and G = E[xtx
′
t ⊗ xtx

′
t] for xt ∼ N(0, In). Zhang et al. (2011)

demonstrate that this results in a stable model that outperforms alternatives such as the DCC if
the data are fat-tailed and skewed.

Using the dynamic GH model for the individual CDS series, we first estimate the parameters
for the fv

t process. Applying equations (A4) to (A7) in the univariate setting, we compute the fv
t s

and use them to filter the data. The time varying factor for country i’s volatility follows as

fv
i,t+1 = ωv

i + avi s
v
i,t + bvfv

i,t, (A9)

with avi and bvi scalar parameters corresponding to the ith series.
Next, we estimate the parameters for the f c

t process using the filtered data yit/ exp(f
v
it/2).

Assuming the variances are constant (Dt = In), the covariance matrix Σt is equivalent to Rt.
The matrix Ψt should only contain the derivative with respect to Rt. The dynamic model can be
estimated directly as explained above. For parsimony, we follow a similar parameterization of the
dynamic evolution of f c

t as in the DCC model and assume

f c
t+1 = ωc +Acsct +Bcf c

t , (A10)

where Ac, Bc ∈ R are scalars, and ωc is an n(n − 1)/2 vector. To reduce the number of parame-
ters in the maximization, we obtain ωc from the hypersphere transformation of the unconditional
correlation matrix of the transformed data. All remaining parameters are estimated by maximum
likelihood. Inference is carried out by taking the negative inverse Hessian of the log likelihood at
the optimum as the covariance matrix for the estimator.
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