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The ecosystem service degradation sensitivity indicator (EDSI): A 
new framework for understanding the financial risk repercussions 
of nature degradation 
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Bank), Julja Prodani (De Nederlandsche Bank) 

Abstract 

This paper introduces a new framework for integrating dependence on nature (ecosystem services) and 

the degree of nature degradation in estimations of credit risk-related losses for banks. The framework 

brings the field of nature-related financial risks forward by proposing a capital-based sensitivity 

indicator to nature degradation, thereby moving from an “exposure” approach to a “financial risk” 

approach. This ecosystem service degradation sensitivity indicator (EDSI) shows how much of a bank’s 

available capital buffer on top of its minimum requirements is lost due to a shock on nature. It enables 

cross-bank and cross-country comparison of potential financial losses related to nature degradation. 

Our results indicate that incorporating nature degradation into financial risk estimates adds an 

important - and currently missing - layer of risk and offers additional differentiation in capital impact 

among banks and countries. While in this paper the framework uses hypothetical shocks on nature and 

can therefore only produce comparative sensitivity indicators, upon calibrating a shock on different 

ecosystem services the framework can be used to stress-test financial institutions’ solvency position. 
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1. Introduction 

It is now widely recognized within the central banking community that nature-related risks can have 

implications for financial institutions and financial stability at large. In 2022, the NGFS shared that 

‘nature-related risks, including those associated with biodiversity loss, could have significant 

macroeconomic implications, and that failure to account for, mitigate, and adapt to these implications 

is a source of risks relevant for financial stability’ (NGFS, 2022). This realization followed the 2019 

publication of the Global Assessment Report of the Intergovernmental Science-Policy Platform on 

Biodiversity and Ecosystem Services, which outlined the worldwide degradation of nature and the 

services nature provides to people, the so-called ecosystem services (ES), such as pollination or water 

quality (IPBES, 2019). Supervisory expectations related to the management of nature-related risks are 

also increasing (ECB, 2020; DNB, 2023). 

Nature degradation, similarly to climate change, can pose physical or transition-related financial risks 

(NGFS, 2024). Physical risks are those resulting from the degradation of ecosystem services on which 

economic activities depend, while transition risks are those resulting from misalignment with actions 

aimed at protecting, restoring, and/or reducing negative impacts on nature, such as regulation or 

consumer preferences. The dependence of a firm on ecosystem services is a good starting point for 

evaluating physical risks; the more highly dependent a firm is on a certain ecosystem service, the more 

it will be exposed when that ecosystem service degrades. These physical and transition-related risks 

have macroeconomic repercussions - such as higher inflation - and microeconomic repercussions - 

such as cost increases for a corporate. These economic impacts then filter into the traditional risk 

categories of financial institutions. As an example, an increase in costs for a corporate that is 

dependent on water for cooling its heavy machinery might affect its repayment capacity and therefore 

lead to increased credit risk for the bank that has lent to it. The aggregation of microeconomic impacts, 

and their interaction with macroeconomic impacts, can lead to financial system-wide shocks and 

therefore pose a threat to financial stability.  

As nature degradation is a forward-looking, uncertain phenomena, scenario analysis is a useful tool to 

estimate possible losses for financial institutions. To enable such analysis, three steps are needed: (1) 

defining a shock on nature, (2) identifying a firm’s exposure to the shock, and (3) estimating a firm’s 

sensitivity to the shock (see Figure 1) (Svartzman et al., 2021; Hadji-Lazaro et al., 2024). Literature that 

focuses on identifying shocks on nature, such as the acute or chronic degradation of a particular 

ecosystem service, has done so through scenario analyses on nature futures (physical vs transition) 

(IPBES, 2016). Nonetheless, a general or ecosystem service-specific shock or hazard on nature remains 

complicated to model, not least because of its non-linearity and second-round and cascading effects 

(Maurin et al., 2022). Current literature on nature-related financial risks largely focuses on 

“dependence-and-impact analysis”, also called “exposure” analysis. This type of analysis identifies 

exposures of financial institutions that are dependent on nature and/or impact nature (step 2 in Figure 

1), without providing a measure of risk (van Toor et al., 2020; Svartzman et al., 2021; Calice et al., 2021; 

World Bank and Bank Negara Malaysia, 2022). While there have been two main attempts to estimate 

financial risks posed to financial institutions, they have identified major methodological limitations in 

using nature-to-macroeconomy models (Prodani et al., 2023; Ranger & Oliver, 2024). 

Our proposed framework brings the field of nature-related financial risks forward, by introducing a 

new way of incorporating firms’ dependence on nature into a traditional risk assessment model used 
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by financial institutions. This brings dependence “exposure” analysis a step further. Specifically, the 

framework approximates the vulnerability of a firm to nature degradation (step 3 of Figure 1), which 

is necessary to arrive at a risk, i.e. financial loss, estimation. To approximate a firm’s, i.e. bank 

counterparty’s, vulnerability, we integrate both i. the dependence on nature of the economic sector in 

which a firm operates and ii. the degree of nature degradation in the countries where a firm and its 

supply chain operate into a firm’s estimated probability of default. This probability of default is the 

main driver of a bank’s credit risk-related common equity tier 1 (CET1) ratio depletion. We then 

compare banks based on a new proposed indicator – the ecosystem service degradation sensitivity 

indicator (EDSI) – that approximates a sort of “distance to the breach of minimum requirements”. The 

EDSI does this by taking into account not only the banks’ extent of CET1 ratio depletion, but also a 

bank’s CET1 capital “cushion” above minimum requirements. 

Figure 1: Three steps needed for a nature-related scenario analysis 

 

We find that taking into account the extent of nature degradation into financial risk estimations adds 

a needed - and currently missing - layer of risk. Adding nature degradation as a driver of financial losses 

- in addition to dependence on nature - produces more heterogeneity in the level of CET1 ratio 

depletion across banks and countries.1 It also results in a better proxy of financial risk. We identify 

mass stabilization and erosion control, climate regulation, flood and storm protection, ground water, 

and surface water as the ecosystem services to which banks are most sensitive in terms of credit risk 

related capital depletion. Our results point to different sensitivity to a shock on these ecosystem 

services across Single Supervisory Mechanism (SSM) banks and countries.  

Section 2 presents the rationale of the paper and the justification for following this approach. Section 

3 describes the data and methodology used for translating a firm’s dependence on nature and extent 

of nature degradation across its supply chain to asset depreciation that decreases the firm’s distance 

to default. This is done by modifying the Merton model used for credit risk assessments (Merton, 

1973). We then estimate how the change in the probabilities of default implied by this model gives 

rise to changes in loss-given-defaults and subsequently credit losses and increases in risk weighted 

 
 

1 Countries are approximated by a theoretical bank that aggregates all the capital and risk weighted assets of the significant 
banks in that country. 

1 2 3 

Defining a shock on 

nature 

This is not in scope of 

this report 

Identifying a firm’s 

exposure to the shock  

This is approximated 

through the 

Dependence Score 

Estimating a firm’s 

sensitivity to the shock  

This is estimated 

through the Modified 

Merton model, which 

considers nature 

dependence and 

degradation 
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assets for banks that lend to this firms, which ultimately lead to a capital ratio depletion. Section 4 

presents an application of the proposed framework and subsequent results. Section 5 is used to discuss 

the meaning and use of the framework and results, and potential next steps needed to move to a full-

fledged stress test. Section 6 concludes. 

2. Related literature 

Work on nature-related financial risks beyond climate change has been proliferating since 2019. (World 

Economic Forum, 2021; World Bank and Bank Negara Malaysia, 2022; WWF, 2021; OECD, 2019; 

Dasgupta, 2021; Taskforce on Nature-related Financial Disclosure, 2021; Borges & Laurinaitytė, 2023; 

OECD, 2023) In 2020, DNB was the first central bank to conduct a study on Dutch financial institutions’ 

dependencies and impacts on nature (van Toor et al., 2020). The study focused on direct dependencies 

of primary economic sectors on nature. A wave of similar “exposure” analyses followed, which also 

took into account indirect dependencies throughout supply chains for non-primary economic sectors, 

approximated through input-output databases (Svartzman et al., 2021; Calice et al., 2021; World Bank 

and Bank Negara Malaysia, 2022; Boldrini et al., 2023; Hadji-Lazaro et al., 2024). Such analyses map 

the exposures of financial institutions to different degrees of dependence and impact on nature, and 

infer that financial institutions with higher exposures to high-dependence and high-impact 

corporations face a larger financial risk. 

More recently, publications have focused on the assessment of financial losses through 

macroeconomic scenarios. In 2023, DNB conducted a first estimation of nature-related financial losses 

for Dutch financial institutions, thereby moving from an “exposure” analysis to a “risk/financial loss” 

approach (Prodani et al., 2023). The DNB study tried to translate nature-related transition-risk shocks 

to a macroeconomic impact and then using these macroeconomic impacts to obtain potential financial 

losses for Dutch financial institutions. In line with the NGFS Recommendations for the development of 

nature-related scenarios, the DNB study highlighted many of the limitations of i. current nature models 

in capturing the multi-dimensionality and interconnectedness of nature components and ii. the 

linkages between nature and (macro)economic models (NGFS, 2023b). Other recent analyses have also 

used exploratory methodologies in trying to move beyond the pure exposure analysis by adding a 

degree of risk quantification (Boldrini et al., 2023; Ranger & Oliver, 2024). 

As there is currently no mainstream way for translating nature degradation to financial losses for 

financial institutions, this study offers an intuitive framework for doing so. This work builds on the ECB 

Occasional Study (OS) on nature-related physical risks, which is itself based on the Silent Spring report 

of the Banque de France (Svartzman et al., 2021). It introduces two main innovations compared to 

existing research, and specifically the ECB OS. First, it takes the extent of geographical degradation as 

an additional component that affects a firm’s sensitivity to nature. Second, it does so by proposing a 

new framework that integrates dependence on nature and the extent of nature degradation into a 

traditional credit risk assessment model. This Merton model has been introduced by Robert C. Merton 

in 1973 as a way to assess the credit risk of a non-financial corporates (Merton, 1973). In this model, 

default occurs when the value of a firm’s assets falls below a pre-determined threshold of liabilities. 

Subsequent research has shown the applicability of such a model to other types of entities - sovereigns 

and financial institutions -, to which we will also apply this framework (Gray, Bodie, & Merton, 2007; 

Chan-Lau & Sy, 2006). More recently, work has been done to integrate climate-related transition risks, 

and more specifically climate-related taxes, into this model (Reinders et al., 2023). Our proposed 
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framework aims to synthesize and refine this work into a quantification model that builds on an already 

widely-used model for risk professionals while allowing for enough flexibility to incorporate broader 

nature-related risks. 

3. Methodology 

A shock on ecosystem services depreciates the assets of a firm that relies on those ecosystem services. 

This “negative” change in a firm’s balance sheet affects the credit risk borne by the bank that lends to 

this firm. For the credit risk estimation, we rely on the Merton model. Our innovation involves 

incorporating asset depreciation related to the decline of ecosystem services into this model. This asset 

depreciation is proportional to i. a shock on ecosystem services relevant to a firm, ii. the extent to 

which a firm depends on those ecosystem services, and iii. the degree of degradation of ecosystem 

services in the countries where the firm and its supply chain operate. As the calibration of a shock on 

ecosystem services is out of the scope of our work, we impose assumed shocks. Section 3.2 explains 

how we use two approaches in imposing such shocks: one iteration where the same shock is assumed 

across ecosystem services, and one iteration where a total asset depreciation per ecosystem service 

at the SSM level is assumed and then the needed shocks on ecosystem services are reverse-calibrated. 

Our methodological approach consists of four main phases: (1) gathering the nature dependence and 

nature degradation indexes per exposure, (2) incorporating these into each firm’s distance to default 

estimation through the Merton model, (3) estimating banks’ CET1 ratio depletion, and (4) estimating 

the ecosystem service degradation sensitivity indicator (EDSI) (Figure 2, (Section 3.2)). Phase 1 consists 

of using the dependence score (DS) from the ENCORE dataset, which includes the direct exposure of 

an economic sector to an ecosystem service, enhanced with the indirect exposure of an economic 

sector to an ecosystem service, which is made possible through linking ENCORE to the EXIOBASE input-

output database so as to take into account supply-chain information.2 The ENCORE and EXIOBASE 

methodology is the same as the ECB methodology used in their OS on Nature-related physical risks 

(Boldrini et al., 2023). We enrich that existing methodology by adding, in this same step, an index of 

ecosystem degradation per country to take into account the extent to which an ecosystem service is 

degraded in different regions of the world.3 Phase 2 consists of estimating the lower distance to default 

of a firm due to the nature shock. This is done by modifying the traditional Merton model to account 

for the asset depreciation that results from dependence on nature and nature degradation (through 

the indicators mentioned in step 1). Phase 3 consists of estimating the impact on banks’ CET1 ratios. 

Here, we consider the impact that results from credit losses and risk-weighted assets (both through 

probabilities of default (PD) and losses given default (LGD)) . As a last phase, in order to have a better 

view of risk at the bank-level, when making a cross-bank/cross-country comparison, we also take into 

account banks’ capital headroom – i.e. the CET1 capital above a bank’s total Supervisory Review and 

 
 

2 The new ENCORE version published in July includes direct and indirect dependencies of an economic sector to an ecosystem 
service. Partly due to methodological choices we had made in this paper before the updated ENCORE version, we have 
decided to proceed here with using the previous ENCORE version. 
3 The ND-GAIN Index, developed by the Notre Dame Global Adaptation Initiative, assesses a country's vulnerability to climate 
change and other global challenges, its readiness to adapt by evaluating exposure to climate-related risks and adaptive 
capacity. It focuses on key sectors such as agriculture, water, and infrastructure, and includes data on over 180 countries, 
offering insights into how various nations are equipped to handle climate-related challenges and vulnerabilities. Country 
Index // Notre Dame Global Adaptation Initiative // University of Notre Dame 

https://gain.nd.edu/our-work/country-index/
https://gain.nd.edu/our-work/country-index/
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Evaluation Process (SREP) capital requirement (TSCR). Specifically, we compare the newly (depleted) 

CET1 ratio estimated in phase 3 to each bank’s TSCR. The TSCR is the sum of each bank’s pillar 1 and 

pillar 2 capital requirement. This last step allows us to build our proposed indicator – the EDSI –, which 

allows us to see how much of a bank’s available CET1 capital buffer on top of the TSCR requirement is 

lost due to nature degradation. 

Figure 2: The four phases of the proposed framework  

Note: The above phases show in a more detailed manner how we apply Step 2 (identifying exposure to nature) 
and 3 (estimating sensitivity to a shock on nature) of Figure 1, leaving out of scope Step 1 of Figure 1 (defining 
the shock on nature). 

3.1 Data 

There are five main databases we use in our analysis.  

For nature-related data, we use ENCORE, EXIOBASE, and ND-GAIN (Notre Dame Global Adaptation 

Initiative) (Phase 1 of Figure 2). Our subset of ENCORE describes the direct dependence of 86 types of 

production processes on 21 ecosystem services.4 The dependence is categorized into five different 

scales that range from very high to very low. ENCORE itself translates the dependence of the 

production processes into a dependence for economic sub-sectors.5 We translate this categorization 

into numerical scales linearly, meaning that a DS of 1 is used for the highly dependent category and a 

DS of 0 is used for very low dependence6. The direct score obtained by ENCORE is complemented with 

information taken from EXIOBASE on the value chains of each production sector in each region. In this 

way, we can derive indirect dependence scores for sectors not directly dependent on nature. An 

example would be the food processing sector in the Netherlands, which is indirectly dependent on, 

among others, the agricultural sector of the Netherlands but also of Brazil because it uses Brazilian 

 
 

4 ENCORE (encorenature.org) 
5 The ENCORE database contains both dependencies and impacts on ecosystem services. In this analysis, we focus only on 
the dependencies. The database itself maps the production processes to economic sectors using the Global Industry 
Classification Standard (GICS) classification. Building on that, we mapped the GICS to the NACE classification building on the 
work done by the ECB in their Occasional Study on nature-related physical risks. 
6 We also use a dependence score of 0 for production processes not included in the ENCORE database. 

Dependency 
Score

Phase 1 Phase 2 Phase 3 Phase 4

ENCORE
EXIOBASE

State of nature 
degradation

ND-GAIN

Distance to 
Default (DD)/ 
Probability of 
Default (PD)

AnaCredit
Merton Model

Loss given 
default (LGD)

BIS Paper

Exposure at 
default (EAD)
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Expected
losses (EL)

Risk-
weighted 
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(RWA)

Common 
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(CET1)

Comm
on 

equity 
tier 1 
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(CET1 
ratio)

Ecosystem 
service 

degradation 
sensitivity 

indicator (EDSI)

Total SREP 
capital 

requirement 
(TSCR)

COREP
COREP

COREP

https://www.encorenature.org/en
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agricultural output (e.g. soy) as an input in its production process (e.g. to produce soy milk). We use 

the ND-GAIN database, which ranks countries annually based on their degree of nature degradation, 

to retrieve an index that approximates the extent to which the ecosystem services of different 

countries are degraded. In this analysis we consider nature degradation across all countries where a 

firm’s supply chain operates.7 While there are several databases that could be used to proxy the extent 

of nature degradation across countries, our choice of ND-GAIN was made based on two main 

considerations: the relatively broad coverage of nature categories and the extensive geographical 

coverage of all major producing countries.8 The mapping between ND-GAIN categories and the 

ENCORE ecosystem services is explained in section 3.2.2.2. 

For bank-level data, we use the Eurosystem COREP, FINREP, and AnaCredit databases, which have 

information on euro area banks (Phase 2 and 3 in Figure 2). We use COREP for extracting bank-level 

data that is also publicly available in Pillar 3 reports, namely CET1, TSCR, and Risk-Weighted Assets 

(RWA) amounts as of 31 December 2023.9 We use FINREP for extracting publicly available data on total 

assets. We use AnaCredit loan-level data for extracting the outstanding amount of loans as a proxy for 

the exposure at default (EAD) and the PD per loan. As the dataset only includes PDs estimated through 

the internal ratings-based (IRB) approach for credit risk, we approximate missing PDs – estimated 

through the standardized approach (SA) - with the average PD of the economic sector in which the 

firm operates.10 The AnaCredit dataset includes loans to non-financial corporations, sovereigns, and 

financial institutions. 

Our sample covers 200 banks and a total amount of 5.25 trillion loans extended to approximately 1.6 

million creditors across 20 countries (Table 1). We restrict our sample to SSM banks and filter for (i) 

on-balance sheet loans, (ii) loans that are not defaulted and not impaired, (iii) amount outstanding of 

loans, and (iv) reference date 31-12-2023. We use the ECB's list of supervised entities as per December 

202311 as a guiding reference to ensure alignment with the AnaCredit and COREP datasets. Specifically, 

we start by filtering for unique banks within the AnaCredit sample and then check for overlaps with 

our COREP data, retaining only those banks for which COREP information is available. We further refine 

our sample by cross-checking with the ECB's list to ensure we include only significant institutions (SIs). 

When the highest level of consolidation used in the ECB’s SI list is available in our AnaCredit and COREP 

merge, we include that entity in our final sample. When the highest level of consolidation used in the 

ECB’s SI list is not available in our AnaCredit and COREP merge, we include the lower levels of 

consolidation available in the ECB list. We then filter the COREP dataset to include only the highest 

level of consolidation and merge this with our filtered AnaCredit data. This approach results in a 

representative sample of SSM SIs. 

 
 

7 The location of the supply chains is approximated using an input-output table, as we do not have firm specific location data 
for supply chains. 
8 For clarity purposes, it should be noted that ND-GAIN names the degradation scores we use as vulnerability indices. The 
database includes indices – from 0 to 1 - for six nature categories.  
9 For this we use a bank’s RIAD code as identifier. 
10 The loans reported in AnaCredit are those above the reporting threshold of €25,000. The average PD of the economic 
sector in which a firm operates is calculated as a weighted average of the PDs of the sector that are included in AnaCredit. 
11 List of supervised banks (europa.eu) 

https://www.bankingsupervision.europa.eu/banking/list/html/index.en.html
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Table 1: Overview of the selected sample based on AnaCredit and COREP data as of 31 December 2023 

Country 
Total Nominal Amount 

Outstanding in bn 
Average CET1 

Ratio (%) 

Size of portfolio 
considered as % 
of total assets  

BE 182.02 14.5 0.28 
CY 17.86 20.0 0.31 

DE 844.83 14.8 0.28 
EE 16.27 23.3 0.42 

ES 580.18 12.5 0.17 

FI 179.97 26.8 0.24 
FR 1 445.90 17.8 0.17 

GR 81.54 14.5 0.29 
IE 217.57 17.4 0.35 

IT 679.91 14.9 0.26 
LU 55.14 19.3 0.41 

NL 898.93 16.5 0.49 

PT 37.75 17.8 0.16 
SI 13.98 17.3 0.34 
 5 251.85 16.3 0.24 

Note: The results presented in this table and section 4 exclude outliers, defined as the countries for which i. less 
than three banks are part of our sample (AT, HR, MT, SK) or ii. the size of the portfolio considered as % of total 
assets is ≤15% or ≥50% (LV, LT). 

3.2  Structural credit risk models  

Credit risk models are tools used to estimate the future default probabilities and loss distribution of 

values of a (bank’s) portfolio of investments. These models are divided into two main categories: 

reduced form and structural models (Oyamienlen, 2024). Reduced form models treat default as 

exogenous, while structural models treat default as endogenous. In this report we focus on structural 

credit risk models, which determine a firm's probability of default based on the value of its assets and 

liabilities, assuming default occurs when the value of the assets is less than the value of liabilities.  

3.2.1 The traditional Merton model 

Structural models, pioneered by Merton (Merton, 1973), employ the Black-Scholes option pricing 

framework to describe default behavior. This is done by defining and estimating a credit risk measure 

called distance to default (DTD) as per the below equation. The intuition behind the model is that a 

firm is closer to default the lower its assets are compared to its liabilities. 

𝐷𝑇𝐷𝑖 =
ln (

𝐴𝑖
𝐷𝑖

) + (𝜇𝑖 −
𝜎𝑖

2

2
) 𝜏

𝜎𝑖√𝜏
 

(1) 

with 

• 𝐷𝑇𝐷𝑖, the distance to default for firm i over the period 𝜏 

• 𝐴𝑖, the firm's asset value 

• 𝐷𝑖, the firm's total value debts 
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• 𝜎𝑖, volatility of the assets12, which is considered as constant over the time period 

• 𝜏, period until assessment of the possible default, which will be considered one year for the 

rest of the study as per regulatory standards13 

• 𝜇𝑖, the expected return of assets, set equal to the risk-free rate 

The Merton model (Merton, 1973) is especially useful for estimating a bank’s credit-related losses, as 

the distance to default it produces can be readily translated into a probability of default for the bank’s 

counterparty. 

𝑃𝐷 = 𝑁(−𝐷𝑇𝐷) (2) 

where N is the standard normal cumulative distribution function. 

Since this first definition, the model has evolved towards greater realism, for example by redefining 

how to take into account different debt maturities, as with the Kealhofer-Merton-Vasicek (KMV) 

model.14 

Originally designed for estimating credit risk for non-financial corporates, the model uses a simplified 

non-financial corporate’s balance sheet summarizing two items: assets and debts. This approach has 

been adapted and used for other sectors, such as sovereign credit risk (Gray, Bodie, & Merton, 2007) 

and banks (Chan-Lau & Sy, 2006). This literature show that the Merton approach can be adapted by 

adjusting the definitions of assets and liabilities. In our approach, we do not use data from debtors' 

balance sheets but rather use default probabilities obtained from AnaCredit or rating agencies. This is 

done under the assumption that sector-specific adaptations of the Merton model are already taken 

into account in the PDs we use. Therefore, we use the same model as in equation (1) to estimate the 

risk of default for non-financial corporates, financial institutions, and governments, all of which are 

referred to as “firms” below.15 

3.2.2 The modified Merton model, integrating dependence on nature and state of nature 

degradation 

3.2.2.1 Introducing asset depreciation into the Merton model 

We adapt the Merton model to account for the firms’ utilization of natural services, i.e. ecosystem 

services.16 Firms operate optimally, freely utilizing ecosystem services. A degradation of the ecosystem 

services on which a firm relies results in productivity loss for the firm. This productivity loss depreciates 

the asset value of the firm, leaving the firm with the option to offset this depreciation through new 

investments, financed through either debt or equity. We choose to show the lower productivity in 

 
 

12 We derive the volatility of assets using the relation between the volatility of assets and the volatility of equity, as deduced 
from the Merton model. A firm’s volatility of equity is proxied through sectoral volatility data obtained from Bloomberg, while 
a firm’s debt ratio is proxied through sectoral debt ratios obtained from ReadyRatios. 
13 Probability of default: CRE32 - IRB approach: risk components (bis.org) 
14 KMV was originally a financial technology firm founded in 1989 by Stephen Kealhofer, John McQuown, and Oldrich Vasicek. 
In 2002, KMV was acquired by Moody’s Corporation and became part of Moody’s Analytics 
15 For the time being, we do not extend this analysis to exposures to households (retail and real estate exposures), given that 
they are not part of AnaCredit. 
16 Such proposed adaptation is made under the assumption that credit risks due to nature degradation are not already 
captured in credit risk assessments. 

https://www.readyratios.com/
https://www.bis.org/basel_framework/chapter/CRE/32.htm
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terms of higher – extra – asset depreciation resulting from nature degradation. Simplifying the 

notation to account for a one year time horizon, the new equation looks as follows:  

𝐷𝑇𝐷𝑖
𝑑𝑒𝑝

=
ln (

𝐴𝑖. 𝑒−𝑑𝑒𝑝𝑖

𝐷𝑖
) + (𝜇 −

𝜎𝑖
2

2
)

𝜎𝑖
=

ln (
𝐴𝑖
𝐷𝑖

) + (𝜇 −
𝜎𝑖

2

2
)

𝜎𝑖
−

𝑑𝑒𝑝𝑖

𝜎𝑖
  

(3) 

with 𝑑𝑒𝑝𝑖 being the “extra” depreciation rate resulting from nature degradation applied to firm i and 

where 0 ≤ 𝑑𝑒𝑝𝑖 < 1, with 0 illustrating a state of no depreciation due to nature degradation and 1 

illustrating a state of stranded assets with no remaining value. From equation (3) one can also note 

that a loss on assets - 𝐴𝑖  -, an increase in debts - 𝐷𝑖  -, or a drop of the expected return on assets - 𝜇𝑖  

– are equivalent. 

The new DTD resulting from nature degradation can now be easily expressed as the initial DTD, 

diminished by a multiple of the depreciation rate resulting from nature degradation over the specified 

time period: 

𝐷𝑇𝐷𝑖
𝑑𝑒𝑝

= 𝐷𝑇𝐷𝑖 − 𝑑𝑒𝑝𝑖/𝜎𝑖  (4) 

where 𝑑𝑒𝑝𝑖 is defined and estimated as in section 3.2.2.2, 𝐷𝑇𝐷𝑖 is calculated based on the known or 

proxied PD and 𝜎𝑖 - equal across firms within the same sector - is derived from sectoral volatilities 

retrieved from Bloomberg.17  

This paper presents the theoretical framework for quantifying the sensitivity of banks to a shock on 

ecosystem services which their counterparties depend on. Here, the depreciation parameter 𝑑𝑒𝑝𝑖 

represents a loss on the counterparty's balance sheet. Ideally, the calibration of the link between this 

loss and a shock on ecosystem services would use external data on how shocks on nature affect the 

productivity of specific economic sectors. This study does not focus on calibration and therefore 

introduces a framework with an assumed shock on ecosystem services (section 3.2.2.2 and 3.2.2.3).  

3.2.2.2 Specifying how asset depreciation is affected by Vulnerability to nature degradation 

As per Phase 1 of Figure 2, for each firm we define the extra depreciation rate stemming from a shock 

on nature as introduced in equation (3) as a product of: 

• a theoretical shock on a firm’s balance sheet due to an ecosystem service on which the firm 

depends (𝛼𝐸𝑆) on (see section 3.2.2.3), and 

• the vulnerability of the firm to that shock (𝑉𝑢𝑙𝐸𝑆,𝑖), where the vulnerability is proxied by the 

dependence of the firm’s main process (via the NACE code) on that ecosystem service and the 

country of that firm – through a dependence score (𝐷𝑆𝐸𝑆,𝑖) - and the degree of nature 

degradation in the countries where the firm and its supply chain operate (𝐷𝑒𝑔𝑟𝐸𝑆,𝑖) 

𝑑𝑒𝑝𝑖 = 𝛼𝐸𝑆 𝑉𝑢𝑙𝐸𝑆,𝑖  (5) 

As per Phase 2 of Figure 2, we can express the new distance to default for a firm i as a function of 

Vulnerability to nature degradation (equation (6)). From this definition, we can see how the 

vulnerability (𝑉𝑢𝑙𝐸𝑆,𝑖), which has a range from 0 to 1, can be seen as a mitigation of the shock 𝛼𝐸𝑆. 

 
 

17 See section 3.1 on how the missing PDs are approximated at the sectoral-country level. 



11 
 

𝐷𝑇𝐷𝑖
𝑑𝑒𝑝

= 𝐷𝑇𝐷𝑖 −
𝛼𝐸𝑆 𝑉𝑢𝑙𝐸𝑆,𝑖

𝜎𝑖
 

(6) 

The estimation of the vulnerability of a firm to nature degradation (𝑉𝑢𝑙𝐸𝑆,𝑖) involves the estimation of 

the direct DS and the estimation of the indirect DS, both enriched with the extent of degradation of 

ecosystem services across different countries. The DS is a metric illustrating the degree to which a 

given production process relies upon a specific ecosystem service. A low DS (close to zero) indicates 

little to no reliance, whereas a high score (close to one) shows that the ecosystem service is crucial for 

the functioning of the economic activity. The direct DS is obtained directly from ENCORE, while the 

indirect DS is generated by intersecting ENCORE with EXIOBASE, considering the supply chain at a 

country and sector level. The DS methodology (direct and indirect) is the same as that followed in the 

ECB Occasional Study on nature-related physical risks (see Appendix A and B in Boldrini et al., 2023). 

We enrich the DS by adding a new component that takes into account the extent of degradation of 

ecosystem services in each country. 

The estimation of the vulnerability of a firm to nature degradation (𝑉𝑢𝑙𝐸𝑆,𝑖) happens in four sub-steps. 

These sub-steps clarify how a firm’s vulnerability varies based on the firm’s economic activity and 

location, and those of its supply chain. 

Sub-step 1 in estimating a firm’s vulnerability to nature degradation: Direct DS 

The first sub-step consists of estimating the direct DS by matching the firm’s NACE code with the Global 

Industry Classification Standard (GICS) in the ENCORE database. While we use level two NACE codes 

for simplicity reasons, a finer granularity is also possible. ENCORE allows us to have the dependence 

score of each economic sector on each ecosystem service included in the database, as shown below. 

𝐸𝑁𝐶𝑂𝑅𝐸 ∶ [

𝐷𝑆𝐸𝑆1,𝑁𝐴𝐶𝐸1 ⋯ 𝐷𝑆𝐸𝑆1,𝑁𝐴𝐶𝐸𝑗

⋮ ⋱ ⋮
𝐷𝑆𝐸𝑆21,𝑁𝐴𝐶𝐸1 ⋯ 𝐷𝑆𝐸𝑆21,𝑁𝐴𝐶𝐸𝑗

], 

where ES1 to ES21 denotes the 21 ecosystem services included in the ENCORE database and NACE j 

denotes NACE level 2 economic sectors. This DS matrix is the same across countries, as the direct DS 

is not location specific.  

Sub-step 2 in estimating a firm’s vulnerability to nature degradation: Direct Vulnerability 

The second sub-step involves enhancing the direct DS with an index which accounts for each country's 

extent of ecosystem service degradation. To do this, we choose the ND-GAIN index given its global 

coverage and simple mapping to the ecosystem services included in ENCORE. While ND-GAIN assesses 

vulnerability and readiness of countries across six nature-related categories using 45 indicators, this 

study focuses on the categories "ecosystems" and “water” within the ND-GAIN Vulnerability Score. 

The “ecosystems” and “water” scores per country are mapped to the ENCORE ecosystem services as 

presented in Appendix 7.5. This mapping approach could be further improved by using more nature-

related categories from ND-Gain or using other more granular nature degradation indices. 

For this second step, we first start with the extent of degradation 𝐷𝑒𝑔𝑟𝐸𝑆 ,𝑐𝑛𝑡𝑟𝑦𝑖
, proxied by the ND-

Gain index. We can then define the Vulnerability index using direct dependencies (DS direct) and the 

extent of degradation of a country’s ecosystem services (equation (7)). The direct vulnerability of each 

firm - 𝑉𝑢𝑙𝑛  𝐸𝑆,𝑖
𝑑𝑖𝑟𝑒𝑐𝑡- introduced above is then mapped to a vulnerability index that takes into account 
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the country and economic sector (NACE) of firm i - 𝑉𝑢𝑙𝑛  𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖, 𝑁𝐴𝐶𝐸𝑖

𝑑𝑖𝑟𝑒𝑐𝑡  – corresponding to the data 

breakdown coming from ENCORE and EXIOBASE. Then by definition: 

𝑉𝑢𝑙𝑛  𝐸𝑆,𝑖
𝑑𝑖𝑟𝑒𝑐𝑡 ≝ 𝑉𝑢𝑙𝑛  𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖

𝑑𝑖𝑟𝑒𝑐𝑡 ≝ 𝐷𝑆𝐸𝑆,𝑁𝐴𝐶𝐸𝑖 
𝑑𝑖𝑟𝑒𝑐𝑡  . 𝐷𝑒𝑔𝑟𝐸𝑆 ,𝑐𝑛𝑡𝑟𝑦𝑖

  (7) 

Following this formulation, the newly produced Vulnerability index takes into account not only the 

dependency of a firm18 - through the economic sector to which it belongs - on ecosystem services, but 

also the extent of nature degradation relevant to the firm’s direct process in the firm’s country as 

stipulated in AnaCredit.  

Sub-step 3 in estimating a firm’s vulnerability to nature degradation: Indirect DS and Indirect 

Vulnerability 

The third sub-step consists of estimating vulnerability to nature degradation also for indirect 

dependencies on nature (𝑉𝑢𝑙𝑛 𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖 
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ). The process to integrate the impact of the supply 

chain and define indirect vulnerabilities is the same as the one for estimating indirect DS based on 

direct DS and incorporating supply chain effects through EXIOBASE, as used in Svartzman et al. (2021) 

and the ECB OS on nature-related physical risks (Boldrini et al., 2023). The only difference is that 

instead of using 𝐷𝑆𝐸𝑆,𝑁𝐴𝐶𝐸𝑖

𝑑𝑖𝑟𝑒𝑐𝑡  to estimate 𝐷𝑆𝐸𝑆,𝑁𝐴𝐶𝐸𝑖

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 , we now use 𝑉𝑢𝑙𝑛  𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖

𝑑𝑖𝑟𝑒𝑐𝑡  to estimate 

𝑉𝑢𝑙𝑛  𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖 
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 . Through following that same process, nature degradation is also taken into 

account throughout the location of the supply chains. 

Sub-step 4 in estimating a firm’s vulnerability to nature degradation: Total Vulnerability 

The fourth and final step involves computing the total vulnerability of a firm to nature degradation 

(𝑉𝑢𝑙𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖
) (equation (8)). This includes direct and indirect dependencies on ecosystem 

services, and the degradation of the ecosystem services on which the firm directly and indirectly 

(through its supply chain) depends on. There are alternatives to how one can estimate the total 

vulnerability based on direct and indirect vulnerabilities (see Appendix 7.1). We choose to estimate 

the total vulnerability of a firm to nature degradation using the highest of the direct and indirect 

vulnerabilities, hereafter referred to as Vuln max. The intuition behind this choice is that a firm is as 

vulnerable as the most vulnerable point in its supply chain, which also implies that a firm cannot 

change its input factors. 

𝑉𝑢𝑙𝑛𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖
= 𝑀𝑎𝑥 (𝑉𝑢𝑙𝑛 𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖

𝑑𝑖𝑟𝑒𝑐𝑡  , 𝑉𝑢𝑙𝑛 𝐸𝑆, 𝑐𝑛𝑡𝑟𝑦𝑖,𝑁𝐴𝐶𝐸𝑖

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 ) (8) 

3.2.2.3 Two approaches for calibrating the shock on ecosystem services and the resulting depreciation 

of assets 

As per our definition in equation (5), a firm’s asset depreciation rate due to nature degradation is the 

product of a theoretical shock on ecosystem services and a mitigating factor specific to the firm. These 

idiosyncratic shocks can be aggregated at a macroeconomic level. Specifically, the shocks suffered by 

all firms to which the SSM SIs in our sample have lent to can be aggregated to obtain an aggregated 

depreciation shock at the SSM level per each ES, expressed as the sum of firm’s depreciation weighted 

by their assets (equation (9)). In our case, we define the firms as the banks’ debtors and approximate 

 
 

18 The firm here is the debtor, i.e. the bank’s counterpart who has taken a loan from the bank. 
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firms’ assets by their loans’ outstanding amounts. This approximation allows us to keep AnaCredit as 

our sole source of firm data. 

(1 −
∆𝐴𝑠𝑠𝑒𝑡𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
)

𝐸𝑆,𝑆𝑆𝑀
=

∑ (1−(
∆𝐴𝑠𝑠𝑒𝑡𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
)

𝑖
)𝐴𝑖

𝑓𝑖𝑟𝑚𝑠 𝑖𝑛 𝑆𝑆𝑀
𝑖

∑ 𝐴𝑖
𝑓𝑖𝑟𝑚𝑠 𝑖𝑛 𝑆𝑆𝑀
𝑖

   
(9) 

Using the depreciation rate in an exponential form as expressed in equation (3), and as defined in (5), 

equation (9) is also equivalent to the below. 

(1 −
∆𝐴𝑠𝑠𝑒𝑡𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
)

𝐸𝑆,𝑆𝑆𝑀
=  

∑ (𝑒
−𝛼𝐸𝑆 𝑉𝑢𝑙𝐸𝑆,𝑖)𝐴𝑖

𝑓𝑖𝑟𝑚𝑠 𝑖𝑛 𝑆𝑆𝑀
𝑖

∑ 𝐴𝑖
𝑓𝑖𝑟𝑚𝑠 𝑖𝑛 𝑆𝑆𝑀
𝑖

   
(10) 

To express this result in a more intuitive way for practitioners, we make use of an approximation using 

the Taylor series expansion for the exponential function of the first order (𝑒𝑥 ≈ 1 + 𝑥). This 

approximation is possible because the term (𝛼𝐸𝑆 𝑉𝑢𝑙𝐸𝑆,𝑖) is always between 0 and 1 and much smaller 

than 1.19 

𝑒(−𝑉𝑢𝑙𝑛𝑖 .𝛼𝐸𝑆) ≈ (1 − 𝑉𝑢𝑙𝑛𝑖  𝛼𝐸𝑆)  (11) 

Using equation (11) in equation (10) and simplifying, we get an aggregated SSM depreciation rate as 

per the below formula. 

(
∆𝐴𝑠𝑠𝑒𝑡𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
)

𝐸𝑆,𝑆𝑆𝑀
= 𝛼𝐸𝑆  

∑ 𝑉𝑢𝑙𝑛𝑖 𝐴𝑖
𝑓𝑖𝑟𝑚𝑠 𝑖𝑛 𝑆𝑆𝑀
𝑖

∑ 𝐴𝑖
𝑓𝑖𝑟𝑚𝑠 𝑖𝑛 𝑆𝑆𝑀
𝑖

  
(12) 

Equation (12) shows how the depreciation at the SSM level is a product of a constant 𝛼𝐸𝑆 on the 

defined perimeter - here SSM SIs in our sample - and the weighted average of the Vulnerability index 

of each firm to which the SSM SIs in our sample lend to, weighed by a firm’s assets. 

To clarify the dimensions used to approximate firms’ vulnerability to nature degradation, the below 

equation shows how firms i are mapped to a group of firms with the same country and NACE sector 

(𝑐𝑛𝑡𝑟𝑦𝑖 , 𝑁𝐴𝐶𝐸𝑖).  

(
∆𝐴𝑠𝑠𝑒𝑡𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
)

𝐸𝑆,𝑆𝑆𝑀
= 𝛼𝐸𝑆.

∑ 𝑉𝑢𝑙𝑛𝐸𝑆,𝑐,𝑛 𝐴𝑐,𝑛
𝑐𝑛𝑡𝑟𝑦,𝑁𝐴𝐶𝐸 𝑖𝑛 𝑆𝑆𝑀
𝑐,𝑛

∑ 𝐴𝑐,𝑛
𝑐𝑛𝑡𝑟𝑦,𝑁𝐴𝐶𝐸 𝑖𝑛 𝑆𝑆𝑀
𝑐,𝑛

   
(13) 

with country c and NACE n defining all possible country-NACE pairs (c,n). 

From the above equation it is also clear that the shock calibration - 𝛼𝐸𝑆 – can be done in two different 

ways. A first approach would be to impose an 𝛼𝐸𝑆 to each ecosystem service, which would need to 

rely on modelling the relation between each ES and at least one economic sector that depends on it. 

The aggregated depreciation would then result from the equation. (see Option 1 below) A second 

approach would impose the aggregated depreciation at the SSM level per each ES, which could 

potentially be taken from an external macroeconomic scenario, and based on that reverse-calibrate 

the 𝛼𝐸𝑆. (see Option 2 below) 

 
 

19 This is also the case in the below Option 2, when the aggregated extra asset depreciation rate at the SSM level due to 
nature degradation is 1% per ES. 
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Option 1: Assuming a constant underlying shock for all ES 

A first approach would be to impose a fixed value of the alpha shock - 𝛼 - across all ecosystem services 

for our chosen perimeter of the SSM. This approach has the upside of being simple and allowing 

comparability of results across ecosystem services. However, as alpha is a theoretical shock on nature, 

it is impossible to get a direct value of it. In addition, micro-calibration on a specific economic process 

is difficult to generalize to all other processes. Section 4.1 presents the results for an assumed alpha 

of 1% for each ES. Given that literature is more likely to provide a value for the loss of productivity or 

asset values that certain economic sectors would experience due to a shock on nature, we present 

option 2 below.  

Option 2: Assuming a constant depreciation rate at aggregated SSM level per each ES 

A second approach would be to impose a fixed value for the aggregated depreciation rate at a defined 

perimeter, here the SSM level, for each ES. This exogenous depreciation rate can be obtained by 

literature or nature-to-economy macro models, defined at a geographical or sectoral level, to calibrate 

alpha while maintaining a relative discrimination among country-sector pairs based on their 

Vulnerability index (see equation (14)).20  

The caveat of this approach in our current case of an assumed depreciation rate is the counterintuitive 

result that in order to reach the same level of depreciation for each ES, a higher (lower) shock alpha 

has to be applied to lower (higher) Vulnerabilities. Section 4.2 presents the results for an assumed 

aggregated SSM depreciation rate of 1% for each ES. 

Following Option 2, we see that taking into account the extent of degradation of different ecosystem 

services in different countries makes the depreciation rates incurred by different loans more divergent 

across countries and sectors of the debtor, and consequently also across banks (Figure 3). For three 

chosen ES, Figure 3 shows the depreciation rate for NACE-country pairs. In the left half of the below 

figure, the depreciation rate takes into account the dependence of a firm on nature and the backwards 

estimated shock to nature (𝛼𝐸𝑆) that is calibrated in order to get a certain aggregated depreciation loss 

at the euro area level for each ES. In the right half of the below figure, the depreciation rate also takes 

into account the extent of nature degradation – in addition to dependence on nature – in order to get 

the same aggregated depreciation loss as in the left half. The broader dispersion of results in the right 

side of the graph shows how taking into account the extent of nature degradation increases the 

divergence in the depreciation rates suffered by different firms. 

 

 

 

 

 
 

20 This Vulnerability index - ranging from 0 to 1 - is definition-dependent and qualitative (e.g. high, medium, and low for 
ENCORE). This means that reverse-calibrated alphas would need to change depending on the definition of the vulnerability 
index, to produce the same exogenous depreciation rate. 
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Figure 3: Spread of the depreciation rate per loan characteristic (sector-country pair of loan debtors), when 
assuming an aggregated 1% depreciation at SSM level per ES 

 

3.3 The CET1 ratio impact 

For estimating the impact on a bank’s CET1 ratio, we use the prescribed formulas of the Basel standards 

for estimating expected losses (EL), RWA, and the CET 1 capital ratios (Phase 3 in Figure 2).21 The re-

evaluation of EL and RWA - including PD, LGD, and EAD - are done at the loan level. For the estimation 

of credit losses, we use exposure data from AnaCredit, the estimated change in PD using the Merton 

model, and the estimated change in the LGD using the model proposed by Frye and Jacobs (2012) as 

explained in Appendix 7.2 (Section 3.3.1).  

For the estimation of risk-weighted assets, we use the same exposure, change in PD and change in LGD 

as in the EL estimation (Section 3.3.2). This is not customary, as the PD used in EL estimations needs 

to be a point-in-time (PIT) PD, while the PD used in RWA estimations needs to be a through-the-cycle 

(TTC) PD. However, we assume that the TTC PD is the same as the PIT PD, given that we expect nature 

degradation to be relatively permanent and assume supply chains and trade flows remain unchanged, 

i.e. that there is no substitution between countries, sectors, and firms within the same sector. A firm 

would then need time to adjust its business due to a shock on ecosystem services. 

Similarly, the LGD used in EL and RWA calculations differs: the LGD used in EL estimations is a PIT LGD, 

while the LGD used in RWA estimations is a downturn LGD. We make the same assumption as for the 

PD, whereby we assume that the change in the downturn LGD is equal to the change in PIT LGD. It is 

important to note that most of the impact on the CET1 ratio comes from the change in RWA – as 

opposed to the EL – component. As the RWA is by construction a longer-term estimation, our results 

point to the importance of recognizing the longer-term repercussions of nature degradation (akin to 

what the RWA aims to capture) as opposed to the shorter-term ones (akin to what the EL aims to 

capture). 

 
 

21 Basel Framework, Basel Framework (bis.org) and RWA formula: CRE31 - IRB approach: risk weight functions (bis.org) 

https://www.bis.org/basel_framework/index.htm
https://www.bis.org/basel_framework/chapter/CRE/31.htm
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3.3.1 Estimating the credit losses 

The estimation of credit losses for the loans in scope of our analysis is done in line with the below 

formula as prescribed by the Basel framework and used in credit risk assessments (Boldrini et al., 2023; 

Chatterjee, 2015).22 

𝐸𝐿𝑏 =  ∑ 𝑃𝐷𝑙. 𝐿𝐺𝐷𝑙. 𝐸𝐴𝐷𝑙
𝐿𝑜𝑎𝑛𝑠 𝑜𝑓 𝑏
𝑙=1   (14) 

with 

- 𝐸𝐿𝑏 , aggregated expected loss of bank b 

- 𝑃𝐷𝑙 , probability of default for the borrower of a loan l 23 

- 𝐿𝐺𝐷𝑙, loss given default, which we model based on the change in PD 

- 𝐸𝐴𝐷𝑙, exposure at default 

The credit losses resulting from the shock on nature are derived from the variation of PDs and LGDs, 

as reflected by the change in expected losses.24 

∆𝐸𝐿𝑏 = ∑ [∆𝑃𝐷𝑙 . 𝐿𝐺𝐷𝑙 + 𝑃𝐷𝑙 . ∆𝐿𝐺𝐷𝑙 + ∆𝑃𝐷𝑙 . ∆𝐿𝐺𝐷𝑙]. 𝐸𝐴𝐷𝑙

𝐿𝑜𝑎𝑛𝑠 𝑜𝑓 𝑏

𝑙

 

(15) 

The variation of PD is derived from the variation of DTD estimated through the Merton model 

described in section 3.2, using the formula defined by the Merton model equation (17). The change in 

LDG is estimated based on the change in PD, as per the model proposed by Frye and Jacobs (2012) 

(see Appendix 7.2). 

3.3.2 Estimating the increase in RWA 

The estimation of the RWA for the loans in scope of our analysis is done in line with the below formula 

as prescribed by the Basel framework. 25 

𝑅𝑊𝐴 = 12,5. 𝐸𝐴𝐷. 𝐿𝐺𝐷. 𝑓(𝑃𝐷) (16) 

with 

𝑓(𝑃𝐷, 𝑀) = [𝑁 (
1

√1−𝑅
𝑁−1(𝑃𝐷) + √

𝑅

1−𝑅
𝑁−1(0,999)) − 𝑃𝐷] .

1+(𝑀−2,5)𝑏

1−1,5𝑏
,  

where  

- {
𝑏 = (0,11852 − 0,05478. 𝑙𝑛(𝑃𝐷))

2

𝑅 = 0,24 − 0,12.
1−𝑒−50.𝑃𝐷

1−𝑒−50

;  

and 

- M is the effective maturity of the loan.  

 
 

22 Basel Framework (bis.org) 
23 Definition: The counterparty’s probability of default over one year, determined in accordance with Articles 160, 163, 179 
and 180 of Regulation (EU) No 575/2013, 11.4.1, p.253, AnaCredit Reporting Manual Part II – Datasets and data attributes, 
second edition (europa.eu) 
24 The change in LGD is modelled based on the estimated change in PD, as per the model proposed in BIS Working Papers, 
No 113 (Altman, Resti, & Sironi, 2022). See Appendix 8.2 for more information. 
25 Basel Framework (bis.org) 

https://www.bis.org/basel_framework/index.htm
https://www.ecb.europa.eu/pub/pdf/other/AnaCredit_Manual_Part_II_Datasets_and_data_attributes_201905~cc9f4ded23.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/AnaCredit_Manual_Part_II_Datasets_and_data_attributes_201905~cc9f4ded23.en.pdf
https://www.bis.org/basel_framework/index.htm


17 
 

The change in RWA, i.e. the increase in RWA due to the nature shock, can then be expressed as in 

equation (16) As for the estimation of the ∆𝐸𝐿, we assume an effective maturity of one year, use the 

PD as estimated in section 3.3.1, and estimate the change in LGD using the model proposed by Frye 

and Jacobs (2012). Sensitivity analysis shows that the higher the choice of effective maturity (M), the 

higher the RWA impact (Appendix 7.4). Therefore, our assumed maturity of one year likely results in 

an underestimation of risk. 

∆𝑅𝑊𝐴𝑏 = 12,5. ∑ [∆𝑓(𝑃𝐷𝑙). 𝐿𝐺𝐷𝑙 + ∆𝐿𝐺𝐷𝑙 . 𝑓(𝑃𝐷𝑙) + ∆𝑓(𝑃𝐷𝑙). ∆𝐿𝐺𝐷𝑙]. 𝐸𝐴𝐷𝑙
𝐿𝑜𝑎𝑛𝑠 𝑜𝑓 𝑏
𝑙    (17) 

where b is a bank and l is a loan in the bank’s portfolio. 

3.3.3 Estimating the CET1 ratio depletion 

The depletion of the CET1 ratio (from here on referred to as ∆CET1 ratio) due to the asset depreciation 

that results from the dependence on nature and the state of nature degradation is estimated using the 

definition of the CET1 ratio as defined in the Basel framework. 

𝐶𝐸𝑇1𝑏
𝑟𝑎𝑡𝑖𝑜 =

𝐶𝐸𝑇1𝑏
𝑐𝑎𝑝𝑖𝑡𝑎𝑙

𝑅𝑊𝐴𝑏
  

(18) 

From the above formula, we derive the change, i.e. depletion, of the CET1 ratio. 

∆𝐶𝐸𝑇1𝑏
𝑟𝑎𝑡𝑖𝑜 =

𝐶𝐸𝑇1𝑏
𝑐𝑎𝑝𝑖𝑡𝑎𝑙

− ∆𝐸𝐿𝑏

𝑅𝑊𝐴𝑏 + ∆𝑅𝑊𝐴𝑏
− 𝐶𝐸𝑇1𝑏

𝑟𝑎𝑡𝑖𝑜 
(19) 

∆𝐶𝐸𝑇1𝑏
𝑟𝑎𝑡𝑖𝑜will then serve as an indicator of the sensitivity of bank b to nature-related physical risks 

coming from the credit portfolio, taking into account the dependence on nature and the state of nature 

degradation. With this indicator, we can conclude on the relative sensitivity of different banks and 

countries to a particular ecosystem service (see Section 4).  

3.4 The ecosystem service degradation sensitivity indicator (EDSI)  

In an effort to have a better view of the risk that ES degradation poses to a bank’s capital position, we 

propose an indicator that takes into account not only the depletion of a bank’s capital position due to 

ES degradation but also a bank’s capital “cushion” above minimum requirements (Phase 4 in Figure 2). 

Through considering both of these aspects, we get an indicator that approximates a sort of “distance 

to the breach of minimum requirements” due to ES degradation. Specifically, we estimate how much 

of a bank’s CET1 ratio above the TSCR ratio made up of CET1 gets depleted due to a shock on ecosystem 

services. We use the TSCR, which includes the pillar 1 requirement and the pillar 2 requirement, as the 

level below which there would be a breach of minimum requirements.26 

𝐸𝐷𝑆𝐼𝑏 =  
∆𝐶𝐸𝑇1𝑏

𝑟𝑎𝑡𝑖𝑜

𝐶𝐸𝑇1𝑏
𝑟𝑎𝑡𝑖𝑜 − 𝑇𝑆𝐶𝑅𝑏

𝑟𝑎𝑡𝑖𝑜   
(20) 

Aggregating to a country level, CET1 and TSCR ratios at the country level are estimated as weighted 

averages, weighed by RWAs of banks within each country (c). 

 
 

26 A comparison to the TSCR is also done by the EBA when analyzing the level of capital depletions when stress-testing 
European banks. See EBA publishes the results of its 2023 EU-wide stress test | European Banking Authority (europa.eu).   

https://www.eba.europa.eu/publications-and-media/press-releases/eba-publishes-results-its-2023-eu-wide-stress-test
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𝐸𝐷𝑆𝐼𝑐 =  
∆𝐶𝐸𝑇1𝑐

𝑟𝑎𝑡𝑖𝑜

𝐶𝐸𝑇1𝑐
𝑟𝑎𝑡𝑖𝑜 − 𝑇𝑆𝐶𝑅𝑐

𝑟𝑎𝑡𝑖𝑜  (21) 

4. Results 

The proposed framework is most useful for cross-bank comparison, given that it depicts a bank’s credit 

risk profile as it relates to the sensitivity of its capital position to a shock on ecosystem services. Such 

bank-level analysis has also the benefit of being more actionable for central bank and supervisory 

authorities. Due to confidentiality reasons, however, the results are aggregated at country level. The 

presented aggregations could therefore hide cross-bank heterogeneity and might be not 

representative of the banking sector of a certain country if the results are influenced by one or a few 

banks with a very different risk profile than the rest of a country’s banks. In the Figures below – as in 

the methodology presented in section 3.3 and 3.4 - countries are approximated by a theoretical bank 

that aggregates all the capital and risk weighted assets of the significant banks included in our sample 

in that country. The results presented herein must be read as a relative sensitivity of countries to a 

certain shock on an ecosystem service – subject to the limitations highlighted in section 5, such as the 

use of a better ES degradation index – and not as an absolute level of vulnerability or resilience of the 

banking sector of a specific country. 

4.1 Results with fixed alpha of 1% per ES 

Figures 4 and 5 show country-level results for methodological Option 1 presented in section 3.2.2.3, 

i.e. when theoretical shock – 𝛼 – of 1% is applied on each ES. Given that this shock is assumed, the 

results must be read in relative rather than absolute terms of impact. In addition, as this shock is 

assumed to be the same across ES, cross-country comparison cross-ES is possible. The comparison 

shows that SSM countries incur, on average, more credit risk- related CET1 ratio depletion (Figure 4) 

and sensitivity of the EDSI indicator (Figure 5) due to shocks in the ecosystem services i. mass 

stabilization and erosion control, ii. climate regulation, iii. flood and storm protection, iv. surface water 

and v. ground water. The cross-ES comparison also points to a certain degree of consistency in the 

comparative sensitivity of countries: some countries are generally less sensitive across ES (e.g. France, 

Spain, Ireland), while some countries are generally more sensitive (e.g. Finland, Cyprus, Greece).  
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Figure 4: ∆CET1 ratio due to ES shock, using 
Vulnerability max (DS & Degr) 

 Figure 5: EDSI due to ES shock, using Vulnerability 
max (DS & Degr) 

 

 

 

Given that the size of the portfolio considered in this analysis – loans to NFCs, FIs, and sovereigns – 

differs per bank and subsequently also per country, it is relevant to consider how much of the CET1 

ratio depletion is due to the size of the portfolio as compared to total assets. Based on a linear 

regression analysis, we have found that only around 10% of the sensitivity of the ∆CET1 ratio is 

explained by the differences on the size of the portfolio in scope of our analysis as compared to total 

assets. The remaining 90% of the sensitivity of the ∆CET1 ratio across countries is explained by factors 

explicitly considered in our framework.27 Still, it is good to note that France and Spain, that generally 

seem to be less sensitive across ES, have some of the lower ratios of portfolio-size-over-total-assets. 

Portugal, on the other hand, has a comparatively even lower ratio of portfolio-size-over-total-assets 

and still turns out to be relatively more impacted. Lastly, it is worth mentioning that countries’ relative 

sensitivity to different ES varies. For example, Luxembourg is the 3rd most sensitive country to a shock 

on ES mass stabilization and erosion control and only the 11th most sensitive to a shock on ES disease 

control (Figure 4). 

The estimation of the EDSI allows us to compare how much closer to a capital breach the shocks in 

different ES bring different banks (Figure 5). As an example, an EDSI of -3% for the Netherlands due to 

a shock on ES mass stabilization and erosion control means that the resulting depletion of the CET1 

ratio would eat away 3% of its CET1 capital buffer above the TSCR filled with CET1. Another 97% of the 

CET1 buffer above the TSCR with CET1 would be remaining before the Netherlands, i.e. the 

“representative Dutch bank”, breaches its minimum requirement of TSCR filled with CET1. When 

comparing Figure 4 to Figure 5, we see that Greece's relative position worsens compared to Estonia, 

indicating that Greece has a lower level of CET1 capital above the TSCR requirement than Estonia. 

Since capital buffers above the TSCR (e.g. macroprudential buffers or Pillar 2 Guidance) are not 

included in the EDSI, as they are not considered a minimum requirement, this shift in position could 

 
 

27 The R2 of the linear regression of ∆CET1 ratio on the ratio of loans outstanding-to-total assets is around 10%, with ES 
pollination having the highest R2 of 34% and ES ventilation having the second-highest R2 of 26%. 
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partly be due to Greece having lower capital buffers than Estonia. For example, Estonia set its 

countercyclical capital buffer at 1.5% in December 2023, while Greece's was set at 0%. 

4.2 Results with fixed depreciation rate of 1% per ES at the aggregated SSM 

level 

Figures 6a, 6b and 7a, 7b show the country-level results for methodological Option 2 presented in 

section 3.2.2.3, i.e. when the shock on each ES - (𝛼𝐸𝑆) - is derived from an assumed 1% depreciation 

rate per ES at the aggregated euro area level. Given this assumed depreciation rate, the results must 

be read in relative terms across countries rather than as absolute impacts. In addition, given the 

potentially different backward-estimated shock on each ES, only a comparison across countries within 

the same ES is possible as opposed to a cross-ES comparison for Option 2. To understand why a 

comparison of capital depletion across ES is not possible, it is helpful to illustrate through an example: 

a much smaller shock on the ES surface water – on which many large economic sectors are highly 

dependent on – would lead to the same 1% depreciation as a much larger shock on the ES pollination 

– on which not many large economic sectors are highly dependent on. 

 

Figure 6a: ∆CET1 ratio, using DS max  Figure 6b: ∆CET1 ratio, using Vulnerability max (DS 
& Degr) 
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Figure 7a: EDSI, using DS max  Figure 7b: EDSI, using Vulnerability max (DS & Degr) 

 

 

 
Figures 6a and 6b show the CET1 ratio depletion due to a 1% depreciation rate at the aggregated SSM 

level for each ES. The difference between these figures is that in 6a the impact is only due to 

dependence on nature, while in 6b the impact is due to both dependence on nature and the extent of 

nature degradation, which we call the Vulnerability to nature degradation. From Figure 6a and b we 

can draw two conclusions. First, adding the extent of ES degradation for different countries 

accentuates the differences in the countries’ capital depletion per ES. This is apparent in a much wider 

dispersion of ∆CET1 ratios across countries for each particular ES when comparing Figure 6a and 6b. 

Regardless of this wider dispersion, we do notice that across figures 6a and 6b, the depletion of the 

CET1 ratio is more heterogeneous within some ES. This heterogeneity reflects differences in the 

breakdown of economic sectors across countries. As an example, for the ES ground water, on which 

many and similar economic sectors across countries are dependent, the ∆CET1 ratio across countries 

is less dispersed than for ES pollination. Second, we observe that adding nature degradation as a driver 

of financial losses – in addition to dependency on nature – sometimes changes countries’ relative 

sensitivity to a particular ES. For example, moving from Figure 6a to 6b we observe that the relative 

position of Greece improves when the extent of the degradation of its ecosystem services is taken into 

account, pointing to other countries having comparatively more degraded ES than Greece. Lastly, 

similarly to the results in section 4.1, we observe some consistency in the comparative sensitivity of 

countries to a shock across ES: some countries are generally less sensitive across ES (e.g. France, Spain), 

while other countries are generally more sensitive (e.g. Greece, Cyprus, Estonia) (Figure 6b). 

The estimation of the EDSI allows us to compare how much closer to a capital breach the shocks in 

different ecosystem services bring different banks (Figure 7a,7b). Figures 7a and 7b show the EDSI due 

to a 1% depreciation rate at the aggregated SSM level for each ES. The difference between these two 

figures is that in 7a the impact is only due to dependence on nature, while in 7b the impact is due to 

both dependence on nature and extent of nature degradation (Vulnerability to nature degradation). 

The conclusions drawn in Figure 6 a and b can also be drawn for these figures. Specifically, we can see 

that when the EDSI indicator considers Vulnerability to nature degradation, Greece turns out to be one 

of the most sensitive countries while France and Ireland turn out to be least sensitive (Figure 7b). In 

addition, when comparing Figure 6b to Figure 7b, we find that – similarly to the comparison between 

Figure 4 and 5 – the relative position of countries within a particular ES changes. For example, when 
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moving from Figure 6b to 7b, the relative position of Greece compared to Estonia worsens for ES 

climate regulation. This points to a potentially lower level of CET1 capital above the TSCR requirement 

for Greece compared to Estonia. As also mentioned in section 4.1, this difference might be due to other 

non-minimum requirements, such as macroprudential buffers, which are not considered in the EDSI. 

5. Discussion 

Our analysis faces methodological limitations that match the state of maturity of the research field of 

nature-related financial risk. First, there are two main limitations related to the use of the DS. One is 

that the DS does not have a geographical component, meaning that every economic sector is assumed 

to have the same dependence on nature across all regions of the world. This might not be true do to 

different reasons, including possible differences in technological advancement among countries. 

Second, the DS is at a sub-sectoral level and not more granular. This means that differences in the 

dependence of a certain firm on a particular ecosystem service - which can be due to different business 

models, sustainable practices, etc., - are not taken into account. As an example, using the DS as-is and 

not enriching it with firm-level information would mean that a firm that uses water in a more efficient 

manner would still experience the same change in PD as a firm that uses water less efficiently in the 

same sector, ceteris paribus. By knowing their customers and taking into account customer-specific 

information - such as sustainable practices, easiness of switching suppliers, etc. - banks could 

sometimes effectively manage their risks by re-directing their portfolios towards firms with more 

nature-friendly/efficient use of natural resources within the same sector. 

Two other notable limitations are the lack of firm-specific supply chain geolocational information and 

the lack of a perfect mapping between the ES included in the ENCORE database and other databases 

that measure the extent of ES degradation across regions. Due to the lack of geolocational data for the 

supply chain of firms to which a bank lends, an input-output table such as EXIOBASE has been used. 

Such table gives a geographically explicit overview of flows of production, consumption, and 

investment within countries and flows of international trade in goods and services between countries. 

However, firm-specific supply chains might not always resemble the flows of input-output tables. In 

addition, there is also a lack of geolocational data for the direct/primary process; in this study we use 

the location of the firm that is listed as a debtor in AnaCredit. This is of course an imperfect proxy, as 

the debtor location in AnaCredit does not have to correspond to the location of where the primary 

activities are undertaken. Lastly, in order to better approximate the Vulnerability to ES degradation, it 

is important to have a precise mapping of the ES included in ENCORE – from which we retrieve 

dependencies – and ES included in other databases that measure the extent of nature degradation 

across countries. For this report, we use the ND-Gain index as a proxy for the extent of nature 

degradation in different countries given its global coverage. Another index that better corresponds to 

the degree of ES degradation and/or has more ES granularity would be better suited for such an 

analysis. 

Our analysis is also faced with the difficulty of modelling the non-linearities of nature. The many 

components of nature evolve non-linearly and are subject to tipping points. Given the difficulties 

involved in modelling such natural phenomena, this study has followed the simpler approach of 

assuming nature degradation and its impact on firms is linear. This has been done by estimating asset 

depreciation due to nature degradation by the simple multiplication between the dependence score 

(ranging between 0 and 1) and the index of nature degradation (ranging between 0 and 1). 
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6. Conclusion 

This paper proposes a new framework for translating shocks to nature – ecosystem services – to credit-

related capital depletion for banks, bypassing at the moment the need for better linkages between 

nature and macroeconomic models. The link from nature to credit-related losses is done through the 

introduction of a nature degradation-induced asset depreciation to the balance sheet of a bank’s 

debtors, which increases the probability of default of these debtors. The additional asset depreciation 

rate due to the degradation of ecosystem services is expressed as a product of i. a shock on ecosystem 

services on which a debtor/firm depends, ii. the dependence of the firm on ecosystem services (as 

approximated by the dependence on ecosystem services of the economic sector in which the firm 

operates), and iii. the extent of nature degradation in the countries where the firm and its supply chain 

are located.  

We find that going beyond dependencies on nature, which is where most research is currently focusing 

on, and taking a further step of introducing the extent of nature degradation into financial risk 

estimations adds a needed - and currently missing - layer of risk. Our results show that taking into 

account the extent of nature degradation adds more differentiation in the capital impacts of banks and 

countries, and results in a better proxy of financial risk. 

This framework, and more specifically the EDSI indicator, enables cross-bank and cross-country 

comparison: it can be useful to central banks and supervisory authorities as a way of prioritizing the 

banks that are most sensitive to the degradation of a particular ecosystem service, e.g. when an 

imminent threat to an ecosystem service becomes apparent. Given that the EDSI also takes into 

account the cushion of capital that a bank has on top of its minimum requirements, it would also 

inform supervisors of the “distance to the breach of minimum requirements” upon the calibration of 

a shock on nature (section 3.4). Alternatively to the EDSI, the central bank and supervisory authority 

can compare the “simple” CET1 ratio depletion of different banks due to a shock in an ecosystem 

service (section 3.3). While the presented results are aggregated at country level, the same estimations 

can be used to present the results at bank level. In that way, banks could be compared to others in the 

same country or peer group (e.g. based on business model, size, etc.). 

To bring the EDSI - or the ∆CET1 ratio indicator - a step further, additional research is needed to 

calibrate the link between a shock on ecosystem services and the loss of productivity of economic 

sectors dependent on those ecosystem services. Such calibration would allow the framework to be 

used for stress-testing the capital position of banks and other financial institutions and for reading the 

capital impacts in absolute terms. In this paper, due to the lack of such calibration, we have assumed 

theoretical shocks on nature and have therefore produced results that can only be read in relative 

terms, i.e. a comparison across countries and banks, rather than absolute results that would give a 

definite answer as to the capital impact of a shock on nature. Beyond calibration, we encourage further 

work on improving the dependence scores on ES (e.g. by adding to them a geographical component). 

This paper’s main contribution is to introduce a flexible framework for assessing nature-related 

financial risks in a field where there is as of yet no straightforward and broadly accepted approach. 

While the current paper focuses on physical risk- related credit losses for European banks through the 

loans they have extended, the framework is flexible to be more widely applicable with few 

modifications. We highlight a few next steps as most promising. A first next step would be to integrate 

market risk related to bond and equity holdings. Second, the same methodology could be applied to 
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estimate the sensitivity of insurers’ capital positions to nature degradation, while exploring the 

applicability to pension funds. Another important extension of this work would be the implementation 

of multi-dimensional shocks, integrating i. physical and transitional risks and ii. the interaction between 

nature and climate. Importantly, this methodology could become usable as a fully fledged risk 

assessment and/or stress test upon calibrating nature-related shocks and their consequent impact on 

firms’ productivity using nature-to-economy modelling frameworks. 
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7. Appendix 

7.1 Sensitivity of the ∆CET1 ratio to the definition of the Vulnerability score 

Given that this study does not focus on the calibration of shocks to nature but rather assumes them, 

this section presents two types of sensitivities related to our methodological choices when backwards-

estimating the shock on nature – alpha – based on an assumed aggregated depreciation rate of 1% at 

the SSM level per ES (Option 2 presented in section 3.2.2.3). The first source of sensitivity under 

analysis relates to the definition of the Vulnerability index, which is once done considering only the 

dependence score – DS in columns 4 and 5 of Table 2 – and once done considering the extent of nature 

degradation in addition to the dependence score – Vuln in columns 2 and 3 of Table 2. The second type 

of sensitivity under analysis regards the method of weighing the direct and indirect scores that make 

up the DS and Vulnerability indexes: columns 2 and 4 present an equal weighing between the direct 

and indirect components, while columns 3 and 5 present the maximum of the direct and indirect 

scores (Table 2). For a detailed description of the direct and indirect components please refer to section 

3.2.2.2. 

Table 2: Reverse-calibrated alpha assuming a 1% aggregated depreciation rate at the SSM level per ES 

Ecosystem Services 

Vuln with 

0.5*Direct + 

0.5*Indirect 

Vuln with 

max(direct, 

indirect) 

DS with 

0.5*Direct + 

0.5*Indirect 

DS with 

max(direct, 

indirect) 

Animal-based energy 103.6 58.7 45.0 24.2 

Bio-remediation 26.7 17.0 6.4 3.9 

Buffering and attenuation of mass  

    flows 
53.6 30.8 38.1 20.1 

Climate regulation 20.2 12.4 5.3 3.1 

Dilution by atmosphere and  

   ecosystems 
50.9 30.7 14.1 8.2 

Disease control 77.9 44.4 37.8 20.2 

Fibres and other materials 42.1 24.3 15.8 8.6 

Filtration 37.0 24.4 9.6 5.8 

Flood and storm protection 17.4 11.3 4.7 2.9 

Genetic materials 96.8 55.3 42.7 23.0 

Ground water 14.2 9.2 3.1 1.9 

Maintain nursery habitats 123.1 66.7 88.9 44.6 

Mass stabilisation and erosion  

   control 
6.0 5.5 2.3 2.1 

Mediation of sensory impacts 29.6 18.4 6.8 4.0 

Pest control 57.4 33.8 27.3 14.8 

Pollination 77.9 44.4 37.8 20.2 

Soil quality 52.3 30.9 19.8 10.7 

Surface water 13.1 8.4 2.9 1.7 

Ventilation 78.0 47.3 26.2 14.9 

Water flow maintenance 22.5 14.2 6.1 3.6 

Water quality 29.2 18.2 9.6 5.7 

Note: The gray cells are those for which the simplified formula used for calculating alpha is not appropriate, given 
that alpha is not close to 0. The gray cells are those for which alpha >30%. 
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The results presented in Table 2 are the reverse-calibrated alpha shock parameters. When a small alpha 

corresponds to an ES, it means that a minor shock on that ES can have a significant impact (of 1% at 

the aggregated SSM level for that ES). From the above table we can conclude that a small shock (alpha 

of less than 10%) on ES mass stabilization and erosion control or ES surface water has the same impact 

as a much bigger shock (alpha of more than 44%) on ES genetic materials. The gray alphas in Table 2 

should be disregarded, as the simplification that we have used in equation (11) is only valid for small 

alphas.28 A more precise, i.e. less simplified, analysis could provide exact results without relying on this 

simplification. 

The primary methodological approach chosen in this study corresponds to column 3 of Table 2 and the 

dotted orange curves in Figures 8 and 9, as these correspond to a Vulnerability index that is the highest 

of the direct and indirect vulnerabilities – Vuln_max - (section 3.2.2.2). In Figures 8 and 9, we first rank 

banks based on their ∆CET1 ratio using as reference the methodological option used in the main body 

of this report, as represented by the orange curve. Then, keeping this order of the banks, we build 

other alternative curves to show the sensitivity of the ∆CET1 ratio to other possible methodological 

choices. A spike or dip in the curves of these methodological alternatives shows that banks would be 

ordered differently in terms of impact when using the alternative definition. This is relevant for our 

analysis, as it would mean that the relative sensitivity of banks and countries could change under 

methodological choices different from the ones we have chosen in the main report. Specifically, a peak 

(dip) in the alternative curves means that a bank would have been ordered more to the right (left), 

corresponding to a smaller (bigger) ∆CET1 ratio. 

Figure 8: The sensitivity of the ∆CET1 ratio when using Vuln_max versus DS_max, for ES ground water 

 

Figure 8 shows the ∆CET1 ratio when using Vuln_max versus DS_max (see section 3.2.2.2). As the blue 

curve, which depicts the ∆CET1 ratio for DS_max, shows substantial peaks and dips, we can conclude 

 
 

28 This can also be seen by the production of some alphas >100%, which are not theoretically possible. 
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that including nature degradation in credit risk assessments adds more differentiation across banks 

and enhances the realism of the evaluation. 

Figure 9: The sensitivity of the ∆ CET1 ratio when using Vuln_max versus other aggregation functions, for ES: 
ground water 

 

Figure 9 shows the ∆CET1 ratio when using Vuln_max versus vulnerability when using different 

aggregation functions: 

• Vuln (0,20*direct; 0,8*indirect) means that the Vulnerability index is a weighted average of 

20% of direct vulnerability and 80% of indirect vulnerability; 

• Vuln (0,50*direct; 0,5*indirect) means that the Vulnerability index is a weighted average of 

50% of direct vulnerability and 50% of indirect vulnerability; 

• Vuln (direct*direct; (1-direct)*indirect) means that the Vulnerability index uses as weights the 

direct index and the (1-direct) index, as in the ECB OS on Nature physical risks (2023).  

 
The assumption regarding the aggregation of direct and indirect vulnerabilities is made to bypass the 

lack of detailed information on firms’ supply chains. The observation of peaks and dips across the 

alternative three aggregation functions – excluding Vuln_max that is the reference aggregation 

method -, indicates that the method of aggregating these vulnerabilities does influence the ranking of 

banks in terms of ∆CET1 ratio impact. This suggests that further data and research on this aspect would 

be beneficial. However, relative to the ∆CET1 ratio sensitivity of other factors presented throughout 

the Appendix this appendix, the aggregation method is comparatively less sensitive. Therefore, more 

detailed examinations of aggregation methods can be done a later stage unless it is possible to provide 

company-specific information. 

7.2 Sensitivity of the ∆CET1 ratio to different calibration points used in LGD 

modelling 

The novelty of this paper is a proposed framework that integrates vulnerability to nature degradation 

into the PDs of banks’ counterparties, which subsequently impacts banks’ EL and RWAs and ultimately 

their capital ratios. Given that our focus has been on PDs, we have chosen to model the variation of 
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LGDs based on our estimated variation of PDs using a model proposed by Frye and Jacobs (2012). The 

modelling of LGDs is, next to PDs, crucial for the estimation of credit risk related expected losses and 

RWAs for banks. In this section we check the sensitivity of the ∆CET1 ratio to two different calibration 

points used by Frye and Jacobs. 

According to Frye and Jacobs, for a firm i , ∆𝐿𝐺𝐷𝑖 can be approximated based on the variation in 𝑃𝐷𝑖 

as follows: 

𝑁−1[𝑃𝐷𝑖. 𝐿𝐷𝐺𝑖] − 𝑁−1[𝑃𝐷𝑖] =  
𝑁−1[𝑃𝐷𝑐𝑎𝑙𝑖𝑏.𝐿𝐺𝐷𝑐𝑎𝑙𝑖𝑏]−𝑁−1[𝑃𝐷𝑐𝑎𝑙𝑖𝑏]

√1−𝜌
  (22) 

with 

- 𝑃𝐷𝑐𝑎𝑙𝑖𝑏 is the average annual default rate of a calibration data set. 

- 𝐿𝐺𝐷𝑐𝑎𝑙𝑖𝑏 is calculated based on the average annual loss rate and 𝑃𝐷𝑐𝑎𝑙𝑖𝑏 from the same 

calibration data set. 

- 𝜌 is a correlation term between the modeled default risk and systemic risk  

The formula can be used to recalculate the LDG as follows. 

𝐿𝐺𝐷𝑖 =  
𝑁[

𝑁−1[𝑃𝐷𝑐𝑎𝑙𝑖𝑏𝐿𝐺𝐷𝑐𝑎𝑙𝑖𝑏]+√1−𝜌.𝑁−1[𝑃𝐷𝑖]−𝑁−1[𝑃𝐷𝑐𝑎𝑙𝑖𝑏]

√1−𝜌
]

𝑃𝐷𝑖
  

(23) 

We can ultimately express the variation of 𝐿𝐺𝐷𝑖 in terms of the variation of 𝑃𝐷𝑖. 

∆𝐿𝐺𝐷𝑖 = 𝐿𝐺𝐷𝑖
𝑃𝐷 𝑛𝑒𝑤 − 𝐿𝐺𝐷𝑖

𝑃𝐷 𝑜𝑙𝑑
 (24) 

This necessitates a calibration point [𝑃𝐷𝑐𝑎𝑙𝑖𝑏; 𝐿𝐺𝐷𝑐𝑎𝑙𝑖𝑏] and a correlation term between the modeled 

default and systemic risk, in accordance with the Vasicek approach used by Frye and Jacobs. The Frye 

and Jacobs paper refers to two calibration points: [PD=4,59% ; LGD=65,2% ; 𝜌 =10%] from Altman and 

Karlin and [PD=4,54% ; LDG=42,8% ; 𝜌 =10%] from Moody’s Ultimate Recovery Database (MURD) (Frye 

& Jacobs, LGD Risk Resolved, 2019). In this paper we have used the calibration of MURD. The below 

Figure shows the sensitivity of ∆CET1 ratio when using two other calibrations: the calibration used by 

Altman and Karin, and a fixed LGD of 42%. While the Altman calibration results in a more pronounced 

depletion of the CET1 ratio compared to the MURD calibration, it does not significantly affect the raking 

of banks by ∆CET1 ratio. When comparing the MURD calibration to the fixed LGD calibration, we notice 

very little difference in terms of both shock amplitude and raking of the banks. These results suggest 

that while the calibration choice for the LGD model is worth considering, it does not produce a critical 

sensitivity in the model. 
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Figure 10: The sensitivity of the ∆CET1 ratio when using the MURD LGD calibrations versus the Altman and static 
LGD fixed at 42%, for ES ground water 

 

7.3 Sensitivity of the ∆CET1 ratio to different magnitudes of the aggregated 

asset depreciation shocks 

Given that we lack external data on asset depreciation due to nature degradation, this paper uses an 

assumed aggregated asset depreciation rate of 1% at the SSM level per ES (see Option 2 in section 

3.2.2.3). Therefore, in this section we conduct a sensitivity analysis to grasp to what extent the 

magnitude of the depreciation shock impacts the depletion of the CET1 ratio. 

Figure 11 ranks banks from the most to the least affected, in terms of ∆CET1 ratio, based on the 

assumed 1% aggregated depreciation rate (see orange curve).29 The other curves show the ∆CET1 

ratios for alternative magnitudes of depreciation rates. We observe that for asset depreciation shocks 

of up to 2.5% the rankings of banks remain consistent, i.e. the curves are smooth. However, larger 

asset depreciation shocks give rise to noticeable peaks and dips in the curve, suggesting the need to 

re-evaluate the rankings. These results suggest that for economically “reasonable", i.e. not extreme, 

shocks the overall rankings remain largely consistent. However, increasing the level of the depreciation 

shock increases discrimination between banks and points to non-linearities of impact. This latter point 

highlights the necessity of avoiding linear extrapolation between smaller and larger shocks, especially 

in stress testing. 

 
 

29 The figure excludes a few outlier banks with extremely high ∆CET1 ratio. 
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Figure 11: The sensitivity of the ∆CET1 ratio when using different depreciation rates, for ES ground water  

  

7.4 Sensitivity of the ∆CET1 ratio to different values of M 

When using the RWA formula that the Basel framework prescribes for estimating the RWA of the loans 

in scope of our analysis, we lack data on the effective maturity of the loans (M). We therefore use an 

approximation of one year for M as in equation (16). Our analysis shows that the ∆CET1 ratio is 

sensitive to the choice of M: the higher the M, the higher the ∆CET1 ratio (Figure 12). This is logical, 

considering that loans with higher maturities typically give rise to higher credit risk. From Figure 12 we 

can see that for average maturities between 1 and 5 years the depletion of the CET1 ratio is around 

20% higher, while the relative order of losses between banks remains fairly consistent.30 For longer 

maturities, such as 10 years, the impact is greater and there is a noticeable difference in the ranking 

of banks. Therefore, we can conclude that the effective maturity of the loans is a key driver of results, 

especially when banks' loan portfolios differ significantly in their maturities.  

 
 

30 The figure excludes a few outlier banks with extremely high ∆CET1 ratio. 
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Figure 12: The sensitivity of the ∆CET1 ratio when using different values of M, for ES ground water 

  

7.5 Sensitivity of the ∆CET1 ratio to mapping between ES from ENCORE and 

vulnerabilities from ND-GAIN 

For this study, we have had to map the 21 ES of ENCORE into the six nature categories of the ND_GAIN 

vulnerability index. To do this, we have adopted a simplified approach of mapping into the ND_GAIN 

“water” category all water-related ES of ENCORE, and mapping into the ND_GAIN “ecosystems” 

category the remaining ENCORE ES (column 2, Table 3). To shed more light onto the impact of using 

different mapping approaches, in the below table we also present an alternative mapping whereby all 

ENCORE ES are mapped into the same ND_GAIN Vulnerability index category “ecosystems” (column 3, 

Table 3). 

Table 3: Two alternative approaches of mapping ENCORE ES to ND_GAIN Vulnerability nature categories 

Ecosystem Services 
ND-GAIN Vuln. 

Option_ES & water 

ND-GAIN Vuln. 

Option_ES 

Animal-based energy ecosystems ecosystems 

Bio-remediation ecosystems ecosystems 

Buffering and attenuation of mass  

   flows 
water ecosystems 

Climate regulation ecosystems ecosystems 

Dilution by atmosphere and  

   ecosystems 
ecosystems ecosystems 

Disease control ecosystems ecosystems 

Fibres and other materials ecosystems ecosystems 

Filtration water ecosystems 

Flood and storm protection ecosystems ecosystems 

Genetic materials ecosystems ecosystems 

Ground water water ecosystems 

Maintain nursery habitats ecosystems ecosystems 

Mass stabilisation and erosion    

   control 
water ecosystems 
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Mediation of sensory impacts ecosystems ecosystems 

Pest control ecosystems ecosystems 

Pollination ecosystems ecosystems 

Soil quality ecosystems ecosystems 

Surface water water ecosystems 

Ventilation ecosystems ecosystems 

Water flow maintenance water ecosystems 

Water quality water ecosystems 

 

We find that the mapping choice between the ENCORE ES and an index of nature degradation (in our 

case the two alternative mappings to the ND_GAIN vulnerability index) produces significant sensitivity 

in the CET1 ratio impact. Specifically, we see that when compared to our reference methodological 

option – Vuln_Option ES & water – the alternative mapping significantly alters the ranking of banks' 

capital impacts. This finding underscores the critical importance of choosing a detailed and 

comprehensive mapping of dependency indices to indices of nature degradation, and of testing 

alternative mapping approaches to ensure an accurate interpretation of the results. 

Figure 13: The sensitivity of the ∆CET1 ratio to mapping choices between ENCORE and ND-GAIN, for ES ground 

water 

   

7.6 Sensitivity of the ∆CET1 ratio to different quantification methods for 

ENCORE’s dependency scales 

The ENCORE database grades the dependency of an industrial processes - which is later converted to 

an economic sector - and ecosystems services. This qualitative link uses a scale composed of 5 grades: 

Very Low – Low – Medium – High and Very High. In order to quantify such dependency, the scale is 

translated into an index between 0 and 1, where 0 corresponds to very little dependency and 1 

corresponds to full dependency of a process on an ES. This numerical scale is not defined, leaving open 

different possibilities. In this section we show the sensitivity of the scale to three classic quantification 

functions: linear (which is our reference method used in the chosen methodology of this paper), 

exponential and S-curve. To do so, we first define a numerical correspondence table (Figure 14). 
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Figure 14: Qualitative-to-quantitative equivalences for ENCORE’s dependency scale, for ES ground water 

   

Following the same process to analyse ∆CET1 ratio sensitivities, we notice that the shape of the 

qualitative-quantitative mapping plays a secondary role compared to other modeling choices (Figure 

15). The choice of the simpler and more intuitive linear scale does not seem to hide major sensitivities. 

It is recommended to use this in combination with a sensitivity check, to ensure that the results are 

also comparable when looking at each bank individually. 

Figure 15: The sensitivity of the ∆CET1 ratio when using different quantification grids to quantify ENCORE’s 
qualitative dependency scale, for ES ground water 
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7.7 Glossary 

Abbreviation Term 

CET1 Common Equity Tier 1 

DS Dependence Score 

DS direct Direct Dependence Score 

DTD Distance to Default 

EAD Exposure at Default 

EDSI Ecosystem Service Degradation Sensitivity Indicator 

EL Expected Losses 

ES Ecosystem Service 

GICS Global Industry Classification Standard 

IRB Internal Ratings-Based 

KMV Kealhofer-Merton-Vasicek Model 

LGD Loss Given Default 

NACE Nomenclature of Economic Activities (EU industry classification) 

ND-GAIN Notre Dame Global Adaptation Initiative 

OS Occasional Study 

PD Probability of Default 

PIT PD Point-in-Time Probability of Default 

RWA Risk-Weighted Assets 

SA Standardized Approach 

SREP Supervisory Review and Evaluation Process 

SSM Single Supervisory Mechanism 

TSCR Total SREP Capital Requirement 

TTC PD Through-the-Cycle Probability of Default 

Vuln Vulnerability of a Firm to Nature (ES) Degradation 
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