Revisiting the Relationship Between Unemployment and Wages

Joao Galindo da Fonseca

Giovanni Gallipoli

Yaniv Yedid-Levi

(VSE, University of British Columbia)

ECB, Frankfurt, December 2016

Introduction

- How do wages respond to labor market conditions?
 - ▶ Do past labor market conditions matter? If so, why?
 - Long-standing debate, different views of dynamic wage process.

Introduction

- How do wages respond to labor market conditions?
 - ▶ Do past labor market conditions matter? If so, why?
 - ► Long-standing debate, different views of dynamic wage process.
- Inference drawn from pooled data. No role for job heterogeneity.

Introduction

- How do wages respond to labor market conditions?
 - Do past labor market conditions matter? If so, why?
 - ► Long-standing debate, different views of dynamic wage process.
- Inference drawn from pooled data. No role for job heterogeneity.
- We examine wages processes for different jobs and show that:
 - wage dynamics differ significantly across occupations
 - match quality does influence wages, but in different ways depending on job type
 - contractual arrangements are key (performance pay schemes shape wage dynamics)

Context

• Standard wage-unemployment regression (as in Bils, 1985):

$$\ln w_{i,t+s,t} = \beta_0 X_{i,t+s} + \beta_1 U_{t+s} + \varepsilon_{i,t+s}$$

Context

• Standard wage-unemployment regression (as in Bils, 1985):

$$\ln w_{i,t+s,t} = \beta_0 X_{i,t+s} + \beta_1 U_{t+s} + \varepsilon_{i,t+s}$$

- Beaudry and DiNardo (1991):
 - Risk-aversion and limited commitment on workers' side, risk-neutral firms ⇒ firms insure workers (Harris and Holmstrom, 1982)
 - ▶ Implication: minimum unemployment matters, current does not

$$\ln w_{i,t+s,t} = \beta_0 X_{i,t+s} + \beta_1 U_{t+s} + \beta_2 u_{i,t+s,t}^{\min} + \varepsilon_{i,t+s}$$

Context

Standard wage-unemployment regression (as in Bils, 1985):

$$\ln w_{i,t+s,t} = \beta_0 X_{i,t+s} + \beta_1 U_{t+s} + \varepsilon_{i,t+s}$$

- Beaudry and DiNardo (1991):
 - Risk-aversion and limited commitment on workers' side, risk-neutral firms ⇒ firms insure workers (Harris and Holmstrom, 1982)
 - ▶ Implication: minimum unemployment matters, current does not

$$\ln w_{i,t+s,t} = \beta_0 X_{i,t+s} + \beta_1 U_{t+s} + \beta_2 u_{i,t+s,t}^{\min} + \varepsilon_{i,t+s}$$

- Hagedorn and Manovskii (2013): selection on match quality
 - ▶ Past unemployment effects due to selection
 - Implication: minimum unemployment has no effect after controlling for match quality

$$\ln w_{i,t+s,t} = \beta_0 X_{i,t+s} + \beta_1 U_{t+s} + \beta_2 u_{i,t+s,t}^{\min} + \gamma q_{i,t} + \varepsilon_{i,t+s}$$

Questions

2. How general are existing results? Different jobs, different wage processes!

3. Why different wage processes? Contractual arrangements are very important.

Data Structure: "employment cycles" (Wolpin, 1992)

Definition of employment cycle

a continuous spell of employment, possibly entailing a sequence of jobs

Data Structure: assigning wages

Data Structure: relevant unemployment measures

Match Quality Measures

- Match quality positively correlated with number of offers...
 - 1. ...received during jobs preceding current one
 - 2. ...received during current job

Match Quality Measures

- Match quality positively correlated with number of offers...
 - 1. ...received during jobs preceding current one
 - 2. ...received during current job
- Proxy for number of offers: cumulative labor market tightness (Hagedorn and Manovskii, 2013)
 - 1. preceding current job: $q^{EH} = \sum_{Jan91}^{Nov91} \left(\frac{v_t}{u_t}\right)$
 - 2. during current job: $q^{HM} = \sum_{Dec91}^{Jan94} \left(\frac{v_t}{u_t}\right)$

Match Quality Measures

- Match quality positively correlated with number of offers...
 - 1. ...received during jobs preceding current one
 - 2. ...received during current job
- Proxy for number of offers: cumulative labor market tightness (Hagedorn and Manovskii, 2013)
 - 1. preceding current job: $q^{EH} = \sum_{Jan91}^{Nov91} \left(\frac{v_{t}}{u_{t}}\right)$
 - 2. during current job: $q^{HM} = \sum_{Dec91}^{Jan94} \left(\frac{v_t}{u_t}\right)$
- Recast these measures as the product of duration and average tightness:

$$q = \sum_{t=T_1}^{T_2} \left(\frac{v_t}{u_t} \right) = \Delta T \times \frac{\sum_{t=T_1}^{T_2} \left(\frac{v_t}{u_t} \right)}{\Delta T} \Rightarrow \ln q = \ln (dur) + \ln (\bar{q})$$

Data Structure: adding match quality controls

Specification and Data

$$\begin{array}{lcl} \ln w_{i,t+s,t} & = & \beta_0 X_{i,t+s} + \beta_1 U_{t+s} + \beta_2 u_{i,t+s,t}^{\min} \\ \\ & + \gamma_1 \ln \bar{q}_{i,t}^{eh} + \gamma_2 \ln T_{1,(i,t)}^{beg} + \gamma_3 \ln \bar{q}_{i,t}^{hm} + \gamma_2 \ln T_{beg,(i,t)}^{end} + \varepsilon_{i,t+s} \end{array}$$

- Work histories from NLSY79: weekly data, men 16 and older, completed jobs. Real hourly wages (CPI).
- Unemployment: CPS.
- Vacancies. Composite Help Wanted Index (Barnichon, 2010).
- Controls: individual FE, dummies for age, employer tenure, marital status, industry, union status, SMSA, region; polynomials for year and education.

Pooled Sample Results

Specification		BdN (1991)	HM (2013)	Flex Controls
U	-2.26*** [0.35]	-0.74* [0.43]	-0.93** [0.41]	-1.31*** [0.40]
u ^{min}	-	-3.02*** [0.59]	-0.24 [0.57]	-0.90 [0.68]
In q^{eh}	-	-	5.20*** [0.55]	-
In q^{hm}	-	-	6.61*** [0.45]	-
In $ar{q}^{eh}$	-	_	-	6.11*** [2.23]
$ \ln \operatorname{dur}(q^{eh}) $	-	-	-	4.22*** [0.31]
In $ar{q}^{hm}$	-	-	-	-0.236 [1.84]
$\ln \operatorname{dur}(q^{hm})$	-	-	-	6.84*** [0.48]
# of obs.	30,585 0.587	30,585 0.587	29,872 0.593	29,872 0.596

Estimated coefficients and standard errors are multiplied by 100. Standard errors clustered by observation start and end date. Significance: *** 1%, ** 5%, * 10%.

Results by Occupation: Cognitive vs. Manual

0.40] 0.90 0.68] 11*** 1	[1.25] 12.8***	-0.93* [0.52] -2.11** [0.90]		
0.90 0.68] 11*** 1	0.69 [1.25] 12.8***	-2.11** [0.90]		
0.68] 11*** 1	[1.25] 12.8***	[0.90]		
0.68] 11*** 1	[1.25] 12.8***	[0.90]		
11*** 1	12.8***			
		-2.57		
		-2.57		
2.23]				
	[4.30]	[2.90]		
22*** 3	3.18***	3.63***		
0.31]	[0.57]	[0.38]		
· ·	-	-		
0.236	3.36	-5.79***		
84]	[3.19]	[2.60]		
•				
34*** 7	7.20***	8.66***		
0.48]	[88.0]	[0.63]		
•				
,872	12,254	12,617		
.596	0.610	0.605		
	22*** 3 0.31] 0.236 84] 34*** 7 0.48]	22*** 3.18*** 0.31] [0.57] 0.236 3.36 0.84] [3.19] 34*** 7.20*** 0.48] [0.88]	22*** 3.18*** 3.63*** [0.57] [0.38] 0.236 3.36 -5.79*** [8.84] [3.19] [2.60] 34*** 7.20*** 8.66*** [0.88] [0.63]	22*** 3.18*** 3.63*** [0.57] [0.38] 0.236 3.36 -5.79*** [.84] [3.19] [2.60] 34*** 7.20*** 8.66*** [0.88] [0.63]

Estimated coefficients and standard errors are multiplied by 100. Standard errors clustered by observation start and end date. Significance: *** 1%, ** 5%, * 10%.

Results by Occupation: Routine vs. Non-routine

Specification	Pooled	Cognitive	Manual	Non-Routine	Routine
U	-1.31***	-1.63**	-0.93*	-1.38*	-1.36**
	[0.40]	[0.76]	[0.52]	[0.76]	[0.54]
_U min	-0.90	0.69	-2.11**	0.26	-1.91**
	[0.68]	[1.25]	[0.90]	[1.24]	[0.94]
In $ar{q}^{eh}$	6.11***	12.8***	-2.57	9.61**	0.56
	[2.23]	[4.30]	[2.90]	[4.63]	[2.82]
$ \ln \operatorname{dur}(q^{eh}) $	4.22***	3.18***	3.63***	3.74***	3.43***
	[0.31]	[0.57]	[0.38]	[0.62]	[0.39]
In $ar{q}^{hm}$	-0.236	3.36	-5.79***	2.50	-4.33
	[1.84]	[3.19]	[2.60]	[3.57]	[2.64]
$ \ln \operatorname{dur}(q^{hm}) $	6.84***	7.20***	8.66***	7.88***	7.12***
	[0.48]	[0.88]	[0.63]	[0.87]	[0.67]
# of obs.	29,872	12,254	12,617	11,494	13,377
R ²	0.596	0.610	0.605	0.642	0.622

Estimated coefficients and standard errors are multiplied by 100. Standard errors clustered by observation start and end date. Significance: *** 1%, ** 5%, * 10%.

Results by Education

Specification	Pooled	HS	HS	College
		dropouts	graduates	graduates
U	-1.31***	-1.28	-0.77	-2.25***
	[0.40]	[0.92]	[0.47]	[0.83]
_U min	-0.90	-1.55	-1.40*	-0.48
	[0.68]	[1.34]	[0.82]	[1.45]
In $ar{q}^{eh}$	6.11***	10.2**	-0.70	17.3**
	[2.23]	[4.29]	[2.22]	[4.79]
$\ln \operatorname{dur}(q^{eh})$	4.22***	3.84***	2.98***	4.25***
	[0.31]	[0.56]	[0.35]	[0.67]
In \bar{q}^{hm}	0.226	E 00	0.04	1.06
ın q·····	-0.236	-5.80	-0.04	1.96
	[1.84]	[4.02]	[2.20]	[3.68]
$\ln \operatorname{dur}(q^{hm})$	6.84***	5.15***	5.15***	8.68***
maur(q)	[0.48]	[1.07]	[0.55]	[0.97]
	[0.46]	[1.07]	[0.55]	[0.97]
# of obs.	29,872	5,228	17,751	9,009
R ²	0.596	0.518	0.551	0.577

Estimated coefficients and standard errors are multiplied by 100. Standard errors clustered by observation start and end date. Significance: *** 1%, ** 5%, * 10%.

Investigating the mechanism: Performance Pay Jobs (PPJ)

- Significant differences in the way labor is remunerated across occupations
 wage growth regressions
- New evidence highlighting role of performance-related pay (PPJ)
 - wages in PPJ respond strongly to current unemployment (in contrast to non-PPJ)
 - 2. cognitive occupations have highest incidence of performance pay.
 - Performance pay jobs (PPJ) frequent at high end of wage distribution.
 - PP jobs entail longer durations, and wages respond more strongly to match quality
 - ⇒ performance-related pay may be used to retain good matches in high end occupations (Oyer, 2004).

(1) Wage Dynamics and Performance Pay

Specification	Pooled	Not	PPJ	PPJ	PPJ
		PPJ		not union	union
U	-1.31***	-1.18	-1.591***	-1.88**	-0.22
	[0.40]	[0.80]	[0.586]	[0.75]	[1.26]
$u^{\mathbf{min}}$	-0.90	-0.66	-3.290**	-1.73	-9.37***
	[0.68]	[1.20]	[1.297]	[1.51]	[3.24]
,					
In $ar{q}^{eh}$	6.11***	5.28	27.0***	32.1***	-2.36
	[2.23]	[3.70]	[5.77]	[6.23]	[26.6]
$ \ln \operatorname{dur}(q^{eh}) $	4.22***	4.08***	5.04***	3.87***	21.5***
	[0.31]	[0.54]	[0.866]	[0.99]	[4.37]
ı =hm					
In $ar{q}^{hm}$	-0.236	2.49	9.33*	11.1*	13.0
	[1.84]	[4.03]	[5.27]	[5.87]	[26.6]
ı ı (hm)	C 0.4***	C 05***	7.07***	0.01***	10.0**
Indur(q^{hm})	6.84***	6.05***	7.97***	8.31***	13.2**
	[0.48]	[0.818]	[1.33]	[1.41]	[5.89]
# of obs.	29,872	11,568	7,888	6,493	1,395
 R ²	0.596	0.619	0.719	0.73	0.712

Estimated coefficients and standard errors are multiplied by 100. Standard errors clustered by observation start and end date. Significance: *** 1%, ** 5%, * 10%.

(2) Incidence of PPJ and Unionization

Occupation	Cognitive	Manual	Non-routine	Routine
PPJ share	45%	30%	39%	35%
Union share	21%	28%	23%	26%

Education	College	HS	HS	
	graduates	graduates	dropouts	
PPJ share	49%	38%	31%	
Union share	20%	29%	18%	

Shares are from NLSY79 data, for years in which data on PPJ and Union status is available

PP schemes and workers retention

- Performance pay may serve different purposes
- One objective: to retain good workers in periods when labor market conditions are tighter ('profit-sharing', see work by Lazear or Oyer)
 - Retention motive has immediate implication: job durations should increase with PP
- Evidence? Significant and positive relationship between PP and job durations in NLSY data

Job durations (in quarters)

	Mean	Standard Deviation	Observations
PPJ=1	49.9	34.0	7,888
PPJ=0	38.6	31.3	11,568
COG	40.9	31.0	8,329
MAN	32.4	29.2	6,988
NONROU	41.0	31.0	7,709
ROU	32.8	29.4	7,518

Summary of findings

- Heterogeneous sensitivity of wages to labor market conditions
 - ► Cognitive occupations: wages respond to current unemployment
 - ▶ Manual and routine occupations: wages respond to minimum unemployment

Summary of findings

- Heterogeneous sensitivity of wages to labor market conditions
 - Cognitive occupations: wages respond to current unemployment
 - Manual and routine occupations: wages respond to minimum unemployment
- Heterogeneous sensitivity of wages to match quality measures
 - Duration of employment relationship has positive effect on wages
 - Responsiveness of wages to average labor market tightness varies with occupation
 - Labor market tightness affects wages only when min U does not. Some occupations exhibit genuine dependence on best labor market conditions

Summary of findings

Heterogeneous sensitivity of wages to labor market conditions

- Cognitive occupations: wages respond to current unemployment
- Manual and routine occupations: wages respond to minimum unemployment

Heterogeneous sensitivity of wages to match quality measures

- Duration of employment relationship has positive effect on wages
- Responsiveness of wages to average labor market tightness varies with occupation
- Labor market tightness affects wages only when min U does not. Some occupations exhibit genuine dependence on best labor market conditions

· 'Performance pay' is key

- In non-union jobs, pay schemes help retain valuable employees. Wage dynamics in these jobs exhibit strong tightness gradients and sensitivity to current labor market conditions
- Same phenomenon is apparent when looking at skilled occupations, where retention through profit-sharing is common

Wage Growth Regressions

Specification	Pooled	Cognitive	Manual	Non-Routine	Routine
ΔU	-1.22***	-2.45**	-0.80^{*}	-2.91^{***}	-0.54
	[0.43]	[1.06]	[0.47]	[0.97]	[0.46]
Δu^{min}	-2.86*** [0.84]	-0.60 [1.57]	-4.64*** [1.09]	0.22 [1.64]	-5.16*** [1.08]
# of obs. R ²	27,741 0.006	10,067 0.007	11,887 0.008	9,567 0.007	12,387 0.009

Estimated coefficients and standard errors are multiplied by 100. Standard errors clustered by observation start and end date. Significance: *** 1%, ** 5%, * 10%.

