# Monetary Policy and Endogenous Financial Crises

F. Boissay, F. Collard, J. Galí, and C. Manea

October 2021

-

・ロト ・回ト ・ヨト ・

# Motivation

• What should the role of financial stability considerations in the design of monetary policy?

- conventional view: focus on macro stability
- alternative view: also pre-empt financial crises (and limit their damage ex-post)
- Standard model of monetary policy analysis ignores financial factors
- Extensions with financial frictions: crises triggered by exogenous financial shocks and/or just amplification of nonfinancial shocks
  - $\Rightarrow$  no room for monetary policy to pre-empt financial crises
- Need for a model with endogenous financial crises

(日) (同) (日) (日)

# This Paper

- New Keynesian model with financial frictions  $\Rightarrow$  endogenous financial crises
  - $\Rightarrow$  monetary policy can influence the probability of a crisis
  - $\Rightarrow$  tradeoff between (short run) macro stability and (medium run) financial stability
- Main findings

 $\Rightarrow$  proximate cause of a financial crisis: too low returns on investment due to a capital overhang after a protracted boom  $\Rightarrow$  raises borrowers' incentive to channel financial resources to nonproductive activities and default  $\Rightarrow$  collapse of loan markets

- $\Rightarrow$  deviations from price stability may be desirable: need to tame booms that may bring about "excessive" capital accumulation
- $\Rightarrow$  rule-based policy stressing output stability can help avert crises
- $\Rightarrow$  ex-post discretionary interventions may enhance instability

# Key Ingredients

- Nominal rigidities  $\Rightarrow$  non-neutrality of monetary policy
- Endogenous capital accumulation
- $\bullet\,$  Idiosyncratic productivity shocks  $\Rightarrow\,$  capital reallocation through financial markets
- Financial frictions: asymmetric information and imperfect enforcement

 $\Rightarrow$  possibility of an (endogenous) collapse of financial markets

### **Related Literature**

- Monetary policy and financial frictions
- Reduced form models of endogenous financial crises

Woodford (2012), Svensson (2017), Gourio-Kashyap-Sim (2018), Ajello-Laubach-López Salido-Nakata (2019)

#### • Micro-founded models of endogenous financial crises

Boissay-Collard-Smets (2016), Gertler-Kiyotaki-Prestipino (2019), Fornaro (2015), Paul (2020),...

#### • Evidence on financial crises and misallocation:

Foster-Grim-Haltiwanger (2016), Argente-Lee-Moreira (2018), Campello-Graham-Harvey (2010),....

## Households

• Infinitely lived representative consumer

$$\max \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left[ \frac{C_t^{1-\sigma}}{1-\sigma} - \vartheta \frac{N_t^{1+\nu}}{1+\nu} \right]$$

subject to

$$\begin{split} \int_{0}^{1} P_{t}(i) C_{t}(i) di + B_{t} + \int_{0}^{1} P_{t} Q_{t}(j) S_{t}(j) dj &= W_{t} N_{t} + (1 + i_{t-1}) B_{t-1} + \int_{0}^{1} P_{t} D_{t}(j) S_{t-1}(j) dj + X_{t} \\ \text{where } C_{t} &\equiv \left[ \int_{0}^{1} C_{t}(i)^{1 - \frac{1}{e}} di \right]^{\frac{e}{e-1}} \end{split}$$

• Optimality conditions:

$$C_t(i) = (P_t(i)/P_t)^{-\epsilon} C_t$$
  

$$\beta(1+i_t) \mathbb{E}_t \left\{ (C_{t+1}/C_t)^{-\sigma} (P_t/P_{t+1}) \right\} = Z_t$$
  

$$\beta \mathbb{E}_t \left\{ (C_{t+1}/C_t)^{-\sigma} (1+r_{t+1}^k(j)) \right\} = 1$$
  

$$W_t/P_t = \vartheta N_t^{\nu} C_t^{\sigma}$$

where  $1+r_{t+1}^k(j)\equiv D_{t+1}(j)/\mathcal{Q}_t(j)$ 

<ロ> (日) (日) (日) (日) (日)

### Firms: Final Goods

- Infinitely-lived monopolistic competitors, indexed by  $i \in [0, 1]$
- Transform intermediate good into a differentiated final good
- Price setting subject to quadratic adjustment costs.

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \Lambda_{0,t} \left[ \frac{P_t(i)}{P_t} Y_t(i) - \frac{(1-\tau)p_t}{P_t} Y_t(i) - \frac{\zeta}{2} \left( \frac{P_t(i)}{P_{t-1}(i)} - 1 \right)^2 Y_t \right]$$

subject to  $Y_t(i) = (P_t(i)/P_t)^{-\epsilon}Y_t$ 

• Optimality condition + symmetric equilibrium

$$\Pi_{t}(\Pi_{t}-1) = \mathbb{E}_{t} \left\{ \Lambda_{t,t+1}(Y_{t+1}/Y_{t})\Pi_{t+1}(\Pi_{t+1}-1) \right\} - \frac{\epsilon - 1}{\varsigma} \left( 1 - \frac{\mathcal{M}}{\mathcal{M}_{t}} \right)$$

where

$$\mathcal{M} \equiv rac{\epsilon}{\epsilon - 1}$$
 $\mathcal{M}_t = rac{P_t}{(1 - \tau)p_t}$ 

#### Firms: Intermediate Goods

- Perfectly competitive. Live for one period. Unit measure. Ex-ante identical. Subject to idiosyncratic and aggregate productivity shocks.
- Technology for firm with idiosyncratic shock q

$$y_t(q) = A_t[qK_t(q)]^{\alpha} N_t(q)^{1-\alpha}$$

Assumption:

$$q \in \{0,1\}$$

with q = 0 for a mass  $\mu$  of firms

- At the end of t-1, issue equity. Each firm gets  $Q_{t-1}$
- Shocks observed at the beginning of period t. Firms determine  $K_t(q)$  and  $N_t(q)$ . The gap  $K_t(q) Q_{t-1}$  funded through the loan market, at a (real) interest rate  $r_t^l$ .
- End of t, they produce and sell intermediate good at price  $p_t$ , and sell  $(1-\delta)K_t(q)$  at price  $P_t$

#### Firms: Intermediate Goods

• Equity return for a firm with productivity q

$$\begin{aligned} 1 + r_t^k(q) &= \frac{D_t(q)}{Q_{t-1}} \\ &= \frac{1}{Q_{t-1}} \left[ \frac{p_t}{P_t} y_t(q) - \frac{W_t}{P_t} N_t(q) - (1 + r_t^l) [K_t(q) - Q_{t-1}] + (1 - \delta) K_t(q) \right] \end{aligned}$$

• In equilibrium,  $Q_{t-1} = K_t$  implying:

$$r_t^k(q) = \frac{1}{(1-\tau)\mathcal{M}_t} \frac{y_t(q)}{K_t} - \frac{W_t}{P_t} \frac{N_t(q)}{K_t} - (r_t^l + \delta) \frac{K_t(q) - K_t}{K_t} - \delta$$

<ロ> (日) (日) (日) (日) (日)

# Monetary Policy

$$1+i_t = \frac{1}{\beta} \Pi_t^{\phi_{\pi}} \left(\frac{Y_t}{Y}\right)^{\phi_y}$$

<ロ> (四)、(四)、(日)、(日)、

#### Loan Market: The Frictionless Benchmark

- All potential lenders observe q, contracts fully enforceable
- Equity return for unproductive firms (q = 0)

$$r_t^k(0) = -(r_t'+\delta)\frac{K_t(0)-K_t}{K_t} - \delta$$

If  $r_t^l > -\delta \Rightarrow K_t(0) = 0$  (lends all its capital) If  $r_t^l = -\delta \Rightarrow K_t(0) \in [0, K_t]$  (indifferent between lending or keeping it idle) If  $r_t^l < -\delta \Rightarrow K_t(0) = +\infty$  (borrows and keeps idle)

#### Loan Market: The Frictionless Benchmark

• Equity return for productive firms (q = 1) (conditional on optimal labor choice)

$$r_t^k(1) = \frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} \frac{K_t(1)}{K_t} - (r_t^{\prime} + \delta) \frac{K_t(1) - K_t}{K_t} - r_t^{\prime}$$

where  $\Phi_t \equiv \frac{y_t(1)}{K_t(1)} = A_t^{\frac{1}{\alpha}} \left( \frac{1-\alpha}{(1-\tau)\mathcal{M}_t(W_t/P_t)} \right)^{\frac{1-\alpha}{\alpha}}$ 

$$\begin{array}{l} \mbox{If } r_t^l < \frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} - \delta \Rightarrow \mathcal{K}_t(1) = +\infty \\ \mbox{If } r_t^l = \frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} - \delta \Rightarrow \mbox{indifferent about scale} \\ \mbox{If } r_t^l > \frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} - \delta \Rightarrow \mathcal{K}_t(1) = 0 \mbox{ (lend all its capital)}. \end{array} \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Figure 2: Loan Supply



# Figure 3: Loan Demand (frictionless)



Figure 4: Loan Supply and Demand (frictionless)



#### Loan Market: The Frictionless Benchmark

• Loan market equilibrium

$$r_t^l = r_t^k(0) = r_t^k(1) = \frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} - \delta$$

• Unproductive firms lend all their capital to productive ones:

$$\begin{split} & \mathcal{K}_t &= (1-\mu)\mathcal{K}_t(1) \\ & \mathcal{N}_t &= (1-\mu)\mathcal{N}_t(1) \\ & \mathcal{Y}_t &= (1-\mu)y_t(1) = \mathcal{A}_t \mathcal{K}_t^{\alpha} \mathcal{N}_t^{1-\alpha} \end{split}$$

 $\Rightarrow$  equilibrium equivalent to standard NK model with a representative firm.

### Loan Market: The Case of Frictions

- Asymmetric information and limited enforceability of loan contracts
- Options for an unproductive firm:

(i) borrow to increase its capital, keep it idle, sell it at the end of the period, and abscond. Implied payoff:  $(1-\delta) {\cal K}_t(1)$ 

(ii) lend out its capital in the loan market. Implied payoff:  $(1 + r_t^I)K_t$ 

Incentive compatibility constraint (maximum leverage ratio)

$$\frac{\mathsf{K}_t(q) - \mathsf{K}_t}{\mathsf{K}_t} \leq \frac{\mathsf{r}_t^I + \delta}{1 - \delta}$$

#### Loan Market: The Case of Frictions

• Aggregate loan supply: same as before

$$L_t^{\mathcal{S}}(r_t^{l}) = \begin{cases} 0 & \text{for } r_t^{l} < -\delta \\ [0, \mu K_t] & \text{for } r_t^{l} = -\delta \\ \mu K_t & \text{for } -\delta < r_t^{l} \le \frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} -\delta \\ K_t & \text{for } r_t^{l} > \frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} -\delta \end{cases}$$

• Aggregate loan demand:

$$L_t^D(r_t^l) = \begin{cases} (1-\mu)\frac{r_t^l + \delta}{1-\delta}K_t & \text{for } r_t^l < \frac{a\Phi_t}{(1-\tau)\mathcal{M}_t} - \delta\\ [0, (1-\mu)\frac{r_t^l + \delta}{1-\delta}K_t] & \text{for } r_t^l = \frac{a\Phi_t}{(1-\tau)\mathcal{M}_t} - \delta\\ 0 & \text{for } r_t^l > \frac{a\Phi_t}{(1-\tau)\mathcal{M}_t} - \delta \end{cases}$$

イロン イロン イヨン イヨン

# Figure 4: Loan Demand (frictional)



#### Loan Market: The Case of Frictions

• Case 1 ("high return on investment")

$$\frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} \ge \frac{(1-\delta)\mu}{1-\mu}$$

 $\Rightarrow$  equilibrium with trade ("normal times")

$$Y_t = A_t K_t^{\alpha} N_t^{1-\alpha}$$

Figure 5: Loan Demand and Supply



#### Loan Market: The Case of Frictions

• Case 1 ("high return on investment")

$$\frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} \ge \frac{(1-\delta)\mu}{1-\mu}$$

 $\Rightarrow$  equilibrium with trade ("normal times")

$$Y_t = A_t K_t^{\alpha} N_t^{1-\alpha}$$

• Case 2 ("low return on investment")

$$\frac{\alpha \Phi_t}{(1-\tau)\mathcal{M}_t} < \frac{(1-\delta)\mu}{1-\mu}$$

 $\Rightarrow$  autarkic equilibrium ("financial crisis")

$$Y_t = A_t ((1-\mu)K_t)^{\alpha} N_t^{1-\alpha}$$

# Figure 9: Emergence of a crisis



# Monetary Policy and Financial Stability

Crisis condition

$$\frac{\alpha(Y_t/K_t)}{(1-\tau)\mathcal{M}_t} < \frac{(1-\delta)\mu}{1-\mu}$$

- Given  $K_t$ , a crisis can be induced by a lower  $Y_t$  and/or higher  $\mathcal{M}_t$ . Monetary policy should seek to stabilize both in the short run.
- The larger  $K_t$ , the smaller the shock that may trigger the crisis. Monetary policy should seek to prevent "excessive" capital accumulation in the medium run.
- Feedback effects: anticipation of a possible crisis raises precautionary savings, increasing the probability of a future crisis.

## Anatomy of a Financial Crisis

- Calibration. Non-standard parameter: fraction of unproductive firms  $\mu = 0.024$ , which implies a crisis incidence of 8%. Rest of calibration standard (with Taylor rule as baseline)
- *Simulation* of the (nonlinear) calibrated model over 1 million periods, using a global solution method. Identification of crises starting dates, values of different shocks and variables around them. Report average values ("typical crisis").

# Figure 2: Typical path to crisis



# Monetary Policy Options

- Optimal policy in the absence of financial frictions: strict inflation targeting. But generally not optimal with financial frictions since the flexible price equilibrium allocation is not necessarily efficient (it may involve too many inefficient crises).
- Source of inefficiency: individual agents do not internalize the consequences of their decisions on financial fragility.
- Strict inflation targeting (SIT): fully neutralizes demand-driven crises, but it amplifies output and capital fluctuations driven by technology shocks.
- Output-stability oriented policies  $(\uparrow \phi_y)$

| Rule<br>paramaters                          |                                                                 | Frictionless<br>loan market              | Frictional loan market                |                                                    |                                |                                  |                              |                                             |                                |                                           |  |
|---------------------------------------------|-----------------------------------------------------------------|------------------------------------------|---------------------------------------|----------------------------------------------------|--------------------------------|----------------------------------|------------------------------|---------------------------------------------|--------------------------------|-------------------------------------------|--|
| $\phi_{\pi}$                                | $\phi_y$                                                        | PCE                                      | PCE                                   | Crisis                                             | Length                         | Output                           | Y–, M–, and CA–channels      |                                             |                                |                                           |  |
|                                             |                                                                 | (%)                                      | (%)                                   | time (%)                                           | (quarters)                     | loss (%)                         | $\sigma(Y_t)$                | $\sigma(\mathscr{M}_t)$                     | $\sigma(K_t)$                  | $\rho(Y_t, \mathscr{M}_t)$                |  |
| $+\infty$<br>1.500                          | $0.000 \\ 0.125$                                                | -0.0062                                  | -0.0408                               | 5.03<br>[8.00]                                     | $4.59 \\ 1.78$                 | -5.60<br>-3.20                   | $3.92 \\ 3.62$               | $\begin{array}{c} 0.00 \\ 1.09 \end{array}$ | $3.70 \\ 3.16$                 | $\begin{array}{c} 0.00\\ 0.14\end{array}$ |  |
| $1.500 \\ 1.500 \\ 1.500 \\ 1.500 \\ 1.500$ | $\begin{array}{c} 0.212 \\ 0.309 \\ 0.415 \\ 0.491 \end{array}$ | -0.0059<br>-0.0075<br>-0.0101<br>-0.0124 | -0.0116<br>0.0117<br>0.0239<br>0.0267 | $[5.03] \\ [2.50] \\ [1.00] \\ [0.50] \end{cases}$ | $1.78 \\ 1.68 \\ 1.54 \\ 1.47$ | -2.83<br>-2.54<br>-2.26<br>-2.12 | 3.26<br>2.93<br>2.67<br>2.50 | $1.06 \\ 1.16 \\ 1.32 \\ 1.43$              | $2.77 \\ 2.42 \\ 2.11 \\ 1.92$ | $0.50 \\ 0.72 \\ 0.84 \\ 0.88$            |  |

 Table 3: Economic performance under alternative monetary policy rules

# Monetary Policy Options

- Optimal policy in the absence of financial frictions: strict inflation targeting. But generally not optimal with financial frictions since the flexible price equilibrium allocation is not necessarily efficient (it may involve too many inefficient crises).
- Source of inefficiency: individual agents do not internalize the consequences of their decisions on financial fragility.
- Strict inflation targeting (SIT): fully neutralizes demand-driven crises, but it amplifies output and capital fluctuations driven by technology shocks.
- Output-stability oriented policies  $(\uparrow \phi_v)$
- Rules vs Discretion: the role of monetary policy shocks
  - unusually low rates as a source of financial crises
  - the "late reaction" dilemma: to tighten or to loosen?



# Figure 7: Typical path to crisis with technology and monetary policy shocks

# Conclusion

- Simple extension of the basic NK model with financial frictions and endogenous financial crises
- Focus on one dimension of financial crises: misallocation (and loss in productivity) resulting from financial markets not doing their job.
- $\bullet$  Lessons for monetary policy: rationale for deviating from price stability as a single focus  $\Rightarrow$  need to avert financial fragility

 Table 1: Parametrization

| Parameter                        | Target                                                                               | Value   |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------|---------|--|--|--|--|
| Preferences                      |                                                                                      |         |  |  |  |  |
| $\beta$                          | 4% annual real interest rate                                                         | 0.989   |  |  |  |  |
| $\sigma$                         | Logarithmic utility on consumption                                                   | 1.000   |  |  |  |  |
| u                                | Inverse Frish elasticity equals 2                                                    | 0.500   |  |  |  |  |
| $\vartheta$                      | Steady state hours equal 1                                                           | 0.814   |  |  |  |  |
| Technology and price setting     |                                                                                      |         |  |  |  |  |
| $\alpha$                         | 64% labor share                                                                      | 0.360   |  |  |  |  |
| $\delta$                         | 6% annual capital depreciation rate                                                  | 0.015   |  |  |  |  |
| $\varrho$                        | Same slope of the Phillips curve as with Calvo price setting                         | 105.000 |  |  |  |  |
| $\epsilon$                       | 11% markup rate                                                                      | 10.000  |  |  |  |  |
| $Aggregate \ shocks$             |                                                                                      |         |  |  |  |  |
| $ ho_a$                          | Persistence of TFP                                                                   | 0.950   |  |  |  |  |
| $\sigma_a$                       | Standard deviation of TFP innovation (in $\%$ )                                      | 0.700   |  |  |  |  |
| $ ho_z$                          | Persistence in Smets and Wouters (2007)                                              | 0.220   |  |  |  |  |
| $\sigma_z$                       | Standard deviation of risk–premium innovation in Smets and Wouters (2007) (in $\%$ ) | 0.230   |  |  |  |  |
| Interest rate rule               |                                                                                      |         |  |  |  |  |
| $\phi_{\pi}$                     | Standard quarterly Taylor rule (Taylor (1993))                                       | 1.500   |  |  |  |  |
| $\phi_y$                         | Standard quarterly Taylor rule (Taylor (1993))                                       | 0.125   |  |  |  |  |
| Proportion of unproductive firms |                                                                                      |         |  |  |  |  |
| $\mu$                            | The economy spends $8\%$ of the time in a crisis                                     | 0.0239  |  |  |  |  |

# Figure 4: Impulse response functions around steady state



# (a) TFP shock

(b) Demand shock





# Figure 6: When should a central bank lean?

<u>Notes:</u> Welfare gain (PCE, in %) of the IR–[0.415] or STR rule over SIT (y–axis) as nominal (Panel (a)) or financial (Panel (b)) frictions become more severe —keeping all else equal. A negative PCE means that welfare is higher under SIT than under IR–[0.415] or STR. The dots correspond to our calibrated model, with  $\rho = 105$  and  $\mu = 2.39\%$ .