Temporary Layoffs, Loss-of-Recall, and Cyclical Unemployment Dynamics

Mark Gertler¹, Christopher Huckfeldt², Antonella Trigari³

¹New York University, NBER ²Federal Reserve Board ³Bocconi University, CEPR, and IGIER

Seventh ECB Annual Research Conference September 12 & 13, 2022

What We Do (1/2)

- Document the contribution of temporary layoffs (TL) to unemployment dynamics, from 1978 onwards
- Study contribution of "loss-of-recall" to the cyclicality of unemployment
- Develop model of unemployment fluctuations that distinguishes between temporary and permanent separations ...

What We Do (2/2)

Model allows for two types of unemployment:

- Jobless unemployment (JL): search for new job
- Temporary-layoff unemployment (TL): wait for recall Worker in u_{Tl} moves to u_{ull} if prior job is destroyed (i.e., loss-of-recall)
- Calibrate model to dynamics of jobless and temporary-layoff unemployment using CPS, 1979-2019
- Adapt the model to study the Covid-19 labor market

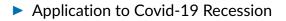
Why We Do It (1/2)

Revisit recessionary impact of temporary layoffs

- Stabilizing "direct" effect: due to recall hiring
 - Workers in UTL return to work faster than workers in UJL
 - Thus, TL's are stabilizing relative to permanent separations
 - Traditional view
- Destabilizing "indirect" effect: due to loss-of-recall
 - Workers in u_{TL} may lose their recall option and move to u_{JL}
 - They do so at a higher rate during recessions
 - ► We estimate *u*_{JL-from-TL} to be countercyclical and highly volatile

Note: recall and loss-of-recall are endogenous and thus policy-dependent

Why We Do It (2/2)


- Onset of Covid-19 pandemic: surge of temporary layoffs
 - First month: 15% of employed workers move to UTL
 - UTL remains persistently high thereafter (across all sectors)
- Fiscal response: Paycheck Protection Program (PPP)
 - Forgivable loans for firms to recall workers
 - \$953-billion program— larger than 2009 Recovery Act
- What role did PPP play in shaping employment recovery?
 - What is the no-PPP counterfactual? Requires structural model
- Our findings: Large monthly reductions in u_{JL} due to PPP
 - ▶ \approx 2 p.p. in short-run, \geq 1 p.p. thru May 2021
 - Achieved by preventing loss-of-recall

Empirics of temporary-layoff unemployment

- Model (three stocks, five flows)
- Model evaluation

and then

Empirics of Temporary-Layoff Unemployment & "Loss-of-Recall"

1. u_{TL} comprises just 1/8 of total unemployment (u)

Table: Total (U), jobless (JL), and temporary-layoff (TL) unemployment, 1978–2019

	U =		
	JL + TL	JL	TL
mean(<i>x</i>)	0.062	0.054	0.008
std(x)/std(Y)	8.518	8.532	10.906
corr(<i>x</i> , <i>Y</i>)	-0.848	-0.810	-0.788

For second and third row, series are taken as (1) quarterly averages of seasonally adjusted monthly series, (2) logged, (3) HP-filtered with smoothing parameter 1600

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u

	То				
From	Е	1			
E	0.955	0.005	0.011	0.029	
TL	0.435	0.245	0.191	0.129	
JL	0.244	0.022	0.475	0.259	
1	0.043	0.001	0.027	0.929	

Table: Gross worker flows, 1978–2019

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate

Table: Transitions from JL, TL, and JL-from-TL, 1978–2019

	То			
From	E	TL	JL	Ι
JL, unconditional	0.244	0.022	0.475	0.259
TL, unconditional	0.435	0.245	0.191	0.129
JL-from-TL	0.271	0.000	0.556	0.173

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:

	$p_{E,TL}$	- ,	- /	- /	$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(<i>x</i> , <i>Y</i>)	-0.393	-0.674	0.599	0.803	-0.192

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL

	₽ _{E,TL}	$p_{E,JL}$	$p_{TL,E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(<i>x</i> , <i>Y</i>)	-0.393	-0.674	0.599	0.803	-0.192

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment

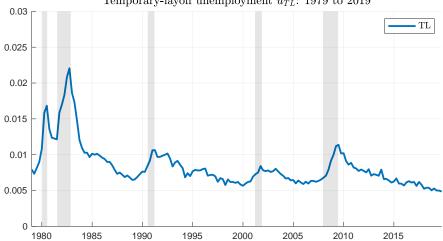
	$p_{E,TL}$	$p_{E,JL}$	$p_{TL,E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(<i>x</i> , <i>Y</i>)	-0.393	-0.674	0.599	0.803	-0.192

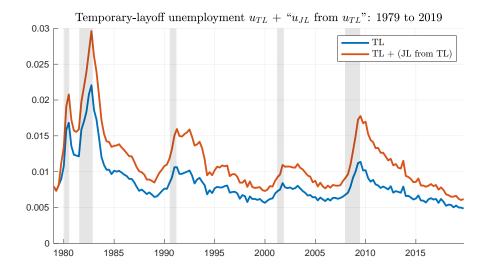
- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL

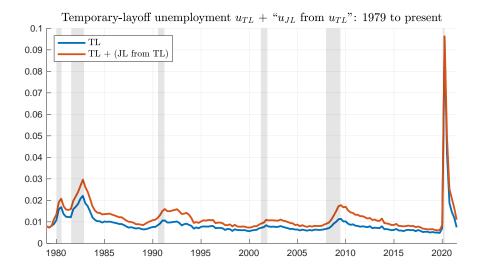
1

- 4.2 Fewer workers from u_{TL} are recalled to employment
- 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)

	$p_{E,TL}$	$p_{E,JL}$	$p_{TL,E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(x, Y)	-0.393	-0.674	0.599	0.803	-0.192


- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)


Direct effect: $p_{E,TL} \uparrow \& p_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow$ Indirect effect: $p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL-from-TL} \uparrow$


- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)
- 5. We develop methods to estimate the indirect effect, i.e. JL-from-TL

Direct effect: $\rho_{E,TL} \uparrow \& \rho_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow$

Indirect effect: $p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL-from-TL} \uparrow$



Model

Model

Model

Starting point: RBC model with search and matching

- Perfect consumption insurance
- Wage rigidity via staggered Nash wage bargaining

Key variations:

- Endog. separations into temporary-layoff unemp.
- Recall hiring from temporary-layoff unemployment
- Endogenous separations into jobless unemployment
 - Allow for temporary paycuts: avoid inefficient separations
 - Permanent sep. triggers $u_{TL} \rightarrow u_{JL}$ for some workers
- Hiring from jobless unemployment

Details of Model

- Unemployed are either in
 - JL: Searching for work in a DMP-style matching market
 - TL: Waiting for recall or loss-of-recall
- Firms, w/ CRS technology in labor and capital, draws cost shocks
 - ► Overhead costs to entire firm ⇒ separations to JL and JL-from-TL
 - ► Worker-specific overhead costs ⇒ separations to TL
- After separations: firms rent capital, hire from JL, and recall from TL
 - Separate hiring costs: recalls less expensive than new hiring
- Base wages set via staggered Nash bargaining
 - But temporary paycuts avoid inefficient exit

Model Evaluation

Calibration

- Calibrate model to match standard labor market stocks and flows...
 - Plus characteristics of temporary layoff, recall, and loss-of-recall
- Nested, two-stage estimation of 18 parameters
 - Inner loop: long-run moments
 - Outer loop: business cycle features

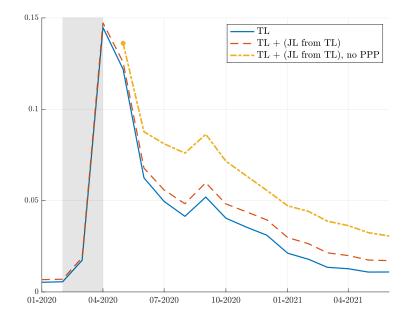
Parameters and Moments

- Where we tie our hands:
 - Not a small-surplus calibration
 - Wage rigidity to match evidence on contract duration
 - Temporary paycuts can undo wage rigidity
- Model does well!

Application to the Covid-19 Recession

Adapting the Model to the Covid-19 Recession

- Introduce two shocks:
 - "Lockdown" shocks: workers move to lockdown-TL (MIT shock)
 - Persistent shocks to effective TFP w/ each wave (social distancing)
- Add two parameters specific to workers on lockdown-TL:
 - Allow for different recall cost (vs. TL)
 - Allow for different rate for loss-of-recall (vs. TL)
- Treatment of PPP:
 - Direct factor payment subsidy, à la Kaplan, Moll, Violante (2020)
 - Pre-announcement: program is unexpected
 - Post-announcement: availability of funds is known
- Estimate shocks and parameters to match stocks and flows
 - Model does well!


No-PPP Counterfactual

- Q: What did PPP do?
 - Keep decision rules, parameters, and shocks, but remove PPP
- A: Saved a lot of worker/job matches!
 - Average monthly employment gains of \approx 2.14 p.p. in first 6 months
 - Doubled cumulative number of recalls over the same period
 - Achieved through reduction of loss-of-recall

Stocks, no-PPP counterfactual

Flows, no-PPP counterfactual

Counterfactual: JL-from-TL without PPP

Conclusion

Concluding Remarks

Two Directions for Further Work

- 1. Match-specific capital
 - Recalls preserve match-specific capital
 - Thus, interesting to consider heterogenous match quality

2. Reallocation

- Evidence that smaller firms benefited more from PPP
- PPP might have hindered efficient reallocation

Supplementary Slides

Estimating JL-from-TL

Use accumulation equations:

$$u_{JL-\text{from-}TL,t} = \sum_{j=0}^{T} e'_{JL} x_{t-j-1,t}$$

where $x_{t-j-1,t}$ is the distribution of workers at time t whose last exit from employment was for u_{TL} at time t - j - 1, s.t.

$$\begin{aligned} \mathbf{x}_{t-m,t-j} &= \tilde{P}_t \mathbf{x}_{t-m,t-j-1} \\ \mathbf{x}_{t-m,t-m} &= \mathbf{e}_{TL} \cdot (\mathbf{n}_{t-m-1}^{E} \cdot \mathbf{p}_{t-m}^{E,TL}) \end{aligned}$$

Relatively small: u_{JL-from-TL} is 40% of u_{TL}

▶ Highly volatile: twice as volatile as total unemployment, 16× as GDP

Model: Full Slides

Searchers, Matching and Recalls

- Jobless unemployment (DMP matching market)
 - New hires *m* from unemployment

$$\boldsymbol{m} = \sigma_{\boldsymbol{m}} (\boldsymbol{u}_{JL})^{\sigma} (\boldsymbol{v})^{1-\sigma}$$

Job finding and job filling probabilities p and q, hiring rate x

$$p = \frac{m}{u_{JL}}, \quad q = \frac{m}{v}, \quad x = \frac{p \cdot u_{JL}}{\mathcal{F}(\vartheta^*)n} = \frac{q \cdot v}{\mathcal{F}(\vartheta^*)n}$$

- Temporary-layoff unemployment
 - Recalls m_r from TL unemployment, recall hiring rate x_r

$$m_r = p_r u_{TL}, \quad x_r = \frac{p_r u_{TL}}{\mathcal{F}(\vartheta^*)n}$$

• Workers in $u_{TL} \rightarrow u_{JL}$ with prob. $1 - \rho_r$ or if firm exits (prob. $1 - \mathcal{G}(\gamma^*)$)

Firms (or plants, shifts, production units, etc.)

- Firms are "large", i.e., hire a continuum of workers
 - Firm, or establishment, or assembly line, etc.
- CRS technology
 - $n \equiv$ beginning of period employment
 - $\mathcal{F} \equiv$ fraction of workers not on temporary layoff

•
$$\xi_k, \xi_n \equiv$$
 factor utilization rates

$$y = \check{z}(\xi_k k)^{\alpha}(\xi_n \mathcal{F} n)^{1-\alpha}$$
$$= zk^{\alpha}(\mathcal{F} n)^{1-\alpha}$$

Given CRS technology, firm decisions scale independent

Overhead Costs: Temporary versus Permanent Layoffs

- $\gamma \equiv i.i.d.$ firm-specific cost shock
- $\vartheta \equiv i.i.d.$ worker-specific cost shock
 - ► Non-exiting firms ($\gamma < \gamma^*$) pay overhead costs to operate:

$$\varsigma(\gamma, \vartheta^*) n = \left[\varsigma_{\gamma} \gamma + \varsigma_{\vartheta} \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta)\right] n$$
$$\mathcal{F}(\vartheta^*) = \Pr\{\vartheta < \vartheta^*\} \qquad \mathcal{G}(\gamma^*) = \Pr\{\gamma < \gamma^*\}$$

• Temporary layoff: each worker draws ϑ

▶ Workers w/ $\vartheta \ge \vartheta^*$ (endog. thresh.) go on temporary layoff

Permanent layoff: firms draws γ

Firm operates if $\gamma < \gamma^*$ (endog. thresh.); otherwise exits

Timing of Events

- 1. Firm enters period with stock of workers *n*
- 2. Aggregate & worker-specific shocks revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff
- 5. Firm-specific shock γ revealed
 - If $\gamma \geq \gamma^* \rightarrow$ firm exits, employed workers move to u_{JL}
 - Firm's workers in u_{TL} move to u_{JL}
 - If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - Hires workers from u_{JL}, recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Timing of Events

- 1. Firm enters period with stock of workers n
- 2. Aggregate & worker-specific shocks revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff
- 5. Firm-specific shock γ revealed
 - If $\gamma \geq \gamma^* \rightarrow$ firm exits, employed workers move to u_{JL}
 - Firm's workers in u_{TL} move to u_{JL}
 - If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - Hires workers from u_{JL}, recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Solve backwards

Behind the Timing

Timing accomplishes the following:

- 1. Temporary layoff policy ϑ^* independent of γ
 - Analytical tractability
- 2. Base wages are independent of γ
 - Computational tractability
- 3. Firm cannot cut wages to avoid temporary layoffs
 - Consistent with data
- \blacktriangleright (1) and (2) achieved by mid-period realization of γ
- (3) achieved by separation of temporary layoffs and bargaining

Firm Problem (at non-exiting firms w/ TL policy ϑ^*)

$$J(\mathbf{w}, \gamma, \mathbf{s}) = \max_{\mathbf{k}, \mathbf{x}, \mathbf{x}_r} \left\{ z \mathcal{F}(\vartheta^*) \mathbf{\check{k}}^{\alpha} - \omega(\mathbf{w}, \gamma, \mathbf{s}) \mathcal{F}(\vartheta^*) - r \mathcal{F}(\vartheta^*) \mathbf{\check{k}} \right.$$
$$\left. - (\iota(\mathbf{x}) \mathcal{F}(\vartheta^*) + \iota_r(\mathbf{x}_r) \mathcal{F}(\vartheta^*)) - \varsigma(\vartheta^*, \gamma) \right.$$
$$\left. + \mathcal{F}(\vartheta^*) (1 + \mathbf{x} + \mathbf{x}_r) \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \mathcal{J}(\mathbf{w}', \mathbf{s}') |, \mathbf{w}, \mathbf{s} \right\} \right\}$$

with

$$\begin{split} \varsigma(\gamma,\vartheta^*) &= \varsigma_{\gamma}\gamma + \varsigma_{\vartheta} \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta) \\ \iota(\mathbf{x}) &= \chi \mathbf{x} + \frac{\kappa}{2} \left(\mathbf{x} - \tilde{\mathbf{x}}\right)^2, \quad \iota_r(\mathbf{x}_r) = \chi \mathbf{x}_r + \frac{\kappa_r}{2} \left(\mathbf{x}_r - \tilde{\mathbf{x}}_r\right)^2 \\ \mathcal{J}(\mathbf{w},\mathbf{s}) &= \max_{\vartheta^*} \int^{\gamma^*} J(\mathbf{w},\gamma,\mathbf{s}) d\mathcal{G}(\gamma) \end{split}$$

Hiring and Recall (at non-exiting firms w/ TL policy ϑ^*)

FOC's for hiring and recall:

$$\chi + \kappa \left(\mathbf{X} - \tilde{\mathbf{X}} \right) = \mathbb{E} \left\{ \Lambda(\mathbf{S}, \mathbf{S}') \mathcal{J} \left(\mathbf{w}', \mathbf{S}' \right) | \mathbf{w}, \mathbf{S} \right\}$$
$$\chi + \kappa_r \left(\mathbf{X}_r - \tilde{\mathbf{X}}_r \right) = \mathbb{E} \left\{ \Lambda(\mathbf{S}, \mathbf{S}') \mathcal{J} \left(\mathbf{w}', \mathbf{S}' \right) | \mathbf{w}, \mathbf{S} \right\}$$

Calibrated model (and data):

Relation of {x, x_r} to job-finding/recall probabilities {p, p_r}:

$$\mathbf{x} = rac{\mathbf{p} u_{JL}}{\mathcal{F}(\vartheta^*)\mathbf{n}}, \quad \mathbf{x}_r = rac{\mathbf{p}_r u_{TL}}{\mathcal{F}(\vartheta^*)\mathbf{n}}$$

Temporary Layoffs

Firm must pay overhead costs to continue to operate:

$$\varsigma(\gamma, \vartheta^*) = \varsigma_\gamma \gamma + \varsigma_\vartheta \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta)$$

FOC for optimal ϑ^* determines TL threshold:

$$\underbrace{\mathcal{J}(\boldsymbol{w}, \boldsymbol{s}) + \varsigma_{\gamma} \Gamma + \varsigma_{\vartheta} \mathcal{G}(\gamma^{*}) \Theta}_{\text{Job value net of period overhead costs}} = \underbrace{\varsigma_{\vartheta} \vartheta^{*} \mathcal{F}(\vartheta^{*}) \mathcal{G}(\gamma^{*})}_{\text{Marginal overhead costs}}$$

with $\Gamma \equiv \int^{\gamma^*} \gamma d\mathcal{G}(\gamma)$ and $\Theta \equiv \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta)$.

Firm Exits (and Temporary Paycuts)

- Given cost shock γ and base wage w, allow temp. paycuts to avoid exit
- Shutdown threshold γ^* solves $J(\underline{w}, \gamma^*, \mathbf{s}) = 0$
 - $\underline{w} \equiv$ reservation wage
- ► Paycut threshold $\gamma^{\dagger} \in (0, \gamma^*)$ solves $J(w, \gamma^{\dagger}, \mathbf{S}) = 0$
 - ▶ Paycut wage keeps zero firm surplus for $\gamma \in (\gamma^{\dagger}, \gamma^{*})$
- Firm's active laborforce + workers on TL go to u_{JL} upon exit

Workers (1/2)

Value of work

$$\mathcal{V}(\mathbf{W},\gamma,\mathbf{S})=\omega\left(\mathbf{W},\gamma,\mathbf{S}
ight)+\mathbb{E}\left\{\Lambda\left(\mathbf{S},\mathbf{S}'
ight)\mathcal{V}(\mathbf{W}',\mathbf{S}')|\mathbf{W},\mathbf{S}
ight\},$$

with

$$egin{aligned} \mathcal{V}(oldsymbol{w},oldsymbol{s}) &= \mathcal{F}(artheta^*) \left[\int^{\gamma^*} V\left(oldsymbol{w},\gamma,oldsymbol{s}
ight) d\mathcal{G}(\gamma) + \left(1-\mathcal{G}(\gamma^*)
ight) U_{JL}(oldsymbol{s})
ight] \ &+ \left(1-\mathcal{F}(artheta^*)
ight) \mathcal{U}_{TL}(oldsymbol{w},oldsymbol{s}) \end{aligned}$$

where

- $U_{JL}(\mathbf{s})$ is the value of jobless unemployment
- U_{TL} is the expected value of temporary-layoff unemployment
- $\omega(\mathbf{w}, \gamma, \mathbf{s})$ are remitted wages

Workers (2/2)

Value of jobless unemployment

$$U_{JL}(\mathbf{s}) = b + \mathbb{E}\left\{ \Lambda\left(\mathbf{s}, \mathbf{s}'\right) \left[p \overline{V}_{x}\left(\mathbf{s}'\right) + \left(1 - p\right) U_{JL}\left(\mathbf{s}'\right) \right] |\mathbf{s}\right\}$$

where \bar{V}_x is the expected value of being a new hire

Value of temporary-layoff unemployment

$$\begin{split} U_{TL}(\boldsymbol{w}, \boldsymbol{s}) &= \boldsymbol{b} + \mathbb{E} \left\{ \Lambda \left(\boldsymbol{s}, \boldsymbol{s}' \right) \left[\boldsymbol{p}_r \mathcal{V} \left(\boldsymbol{w}', \boldsymbol{s}' \right) \right. \\ &+ \left(1 - \boldsymbol{p}_r \right) \rho_r \mathcal{U}_{TL} \left(\boldsymbol{w}', \boldsymbol{s}' \right) \right. \\ &+ \left(1 - \boldsymbol{p}_r \right) \left(1 - \rho_r \right) \mathcal{U}_{JL} \left(\boldsymbol{s}' \right) \right] \left| \boldsymbol{w}, \boldsymbol{s} \right\}. \end{split}$$

with

$$\mathcal{U}_{TL}(\boldsymbol{w}, \boldsymbol{s}) = \mathcal{G}\left(\gamma^*\right) U_{TL}\left(\boldsymbol{w}, \boldsymbol{s}\right) + \left(1 - \mathcal{G}(\gamma^*)\right) U_{JL}\left(\boldsymbol{s}\right).$$

Staggered Nash Wage Bargaining

• Each period, probability $1 - \lambda$ of renegotiating base wage

 $\blacktriangleright\,$ Parties bargain over surpluses prior to realization of $\gamma\,$

- Worker surplus: $\mathcal{H}(w, \mathbf{s}) \equiv \mathcal{V}(w, \mathbf{s}) U_{JL}(\mathbf{s})$
- Firm surplus: $\mathcal{J}(w, \mathbf{s}) \equiv \max_{\vartheta^*} \int^{\gamma^*} J(w, \mathbf{s}) d\mathcal{G}(\gamma)$
- Contract wage w* solves

$$\max_{\substack{ {{\scriptscriptstyle W}}^{st}}} \mathcal{H}({\scriptscriptstyle W},{\scriptscriptstyle {f S}})^\eta \mathcal{J}\left({\scriptscriptstyle W},{\scriptscriptstyle {f S}}
ight)^{1-\eta}$$

subject to

$$m{w}' = \left\{egin{array}{l} m{w} ext{ with probability } \lambda \ m{w}^{*\prime} ext{ with probability } m{1} - \lambda \end{array}
ight.$$

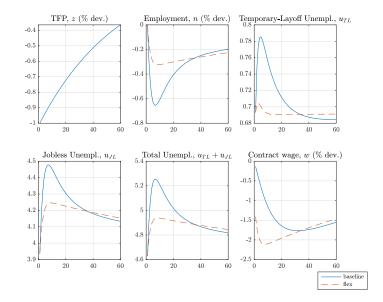
and to wage cut policy

Model Evaluation: Full Slides

Calibration: Assigned Parameters

Parameter values			
Discount factor	β	$0.997 = 0.99^{1/3}$	
Capital depreciation rate	δ	0.008 = 0.025/3	
Production function parameter	α	0.33	
Autoregressive parameter, TFP	ρ_{z}	0.99 ^{1/3}	
Standard deviation, TFP	σ_z	0.007	
Elasticity of matches to searchers	σ	0.5	
Bargaining power parameter	η	0.5	
Matching function constant	σ_{m}	1.0	
Renegotiation frequency	λ	8/9 (3 quarters)	

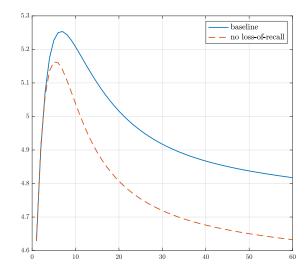
Calibration: Estimated Parameters (inner loop)


Parameter	Description	Value	Target
χ	Scale, hiring costs	1.0567	Average JL, E rate (0.304)
$\varsigma_artheta \cdot {\pmb{ extbf{ heta}}}^{\mu_artheta}$	Scale, overhead costs, worker	0.0893	Average <i>E</i> , <i>TL</i> rate (0.005)
$\varsigma_{\gamma} \cdot {oldsymbol {eta}}^{\mu_{\gamma}}$	Scale, overhead costs, firm	2.0097	Average <i>E</i> , <i>JL</i> rate (0.011)
$1 - \rho_r$	Loss of recall rate	0.3925	Average TL, JL rate (0.210)
b	Flow value of unemp.	0.8848	Rel. value non-work (0.71)

Calibration: Estimated Parameters (outer loop)


Parameter	Description	Value
$\chi/(\kappa \tilde{x})$	Hiring elasticity, new hires	0.3942
$\chi/(\kappa_r \tilde{x}_r)$	Hiring elasticity, recalls	0.8912
$\sigma_artheta$	Parameter lognormal ${\cal F}$	1.4140
σ_{γ}	Parameter lognormal ${\cal G}$	0.3215

Moment	Target	Model
SD of hiring rate	3.304	3.253
SD of total separation rate	6.620	4.707
SD of temporary-layoff unemployment, u_{TL}	10.906	10.969
SD of jobless unemployment, u_{JL}	8.532	10.519
SD of hiring rate from u_{JL} relative to	0.445	0.442
SD of recall hiring rate from u_{TL}		


TFP Shock: Employment, Unemployment and Wages

TFP Shock: Transition Probabilities

TFP Shock: Shut off u_{JL} from u_{TL}

Application to PPP: Full Slides

Adapting the Model to the Covid-19 Recession

Introduce series of shocks and two parameters

1. Shocks:

- "Lockdown" shocks
 - Beginning of period: fraction 1ν move to TL unemp
 - Unanticipated (MIT shock)
- Utilization restrictions on capital and labor
 - Transitory shock at start of pandemic
 - New persistent shock with each Covid wave
- PPP as factor payment subsidy (as in KMV)
 - ▶ PPP 2020: 12.5% of quarterly GDP, most payments May-July 2020
 - ▶ PPP 2021: 5.4% of quarterly GDP, most payments Jan-April 2021

Adapting the Model to the Covid-19 Recession, cont.

. . .

- 2. Two parameters:
 - (Possibly) reduced recall costs for workers in lockdown

$$\chi x_r + \frac{\kappa_r}{2} \left(x_r - \xi \underbrace{\frac{(1-\phi)u_{TL}}{\mathcal{F}(\vartheta^*)n}}_{\text{Workers on lockdown}} - \tilde{x}_r \right)^2$$

b Different rate of exogenous TL-to-JL for workers on lockdown, $\rho_{r\phi}$

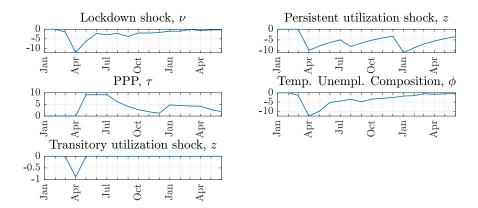
Recession Experiment

- Thus, need to estimate:
 - 1. Lockdown shocks for each month of pandemic (+T)
 - 2. Size of transitory utilization shock at onset of pandemic (+1)
 - 3. Size of persistent utilization shock for three waves (+3)
 - 4. Autoregressive parameter of persistent utilization shock (+1)
 - 5. Two model parameters (+2)
- Moments to match:
 - 1. Stocks: $\{u_{TL}, u_{JL}\}_{\tau}$ since onset of pandemic
 - 2. Gross flows: $\{g_{E,TL}, g_{TL,E}, g_{TL,JL}\}_{\tau}$ since onset
 - 3. Inflows into *u_{JL}*: March-April 2020 only
 - To discipline size of transitory shock

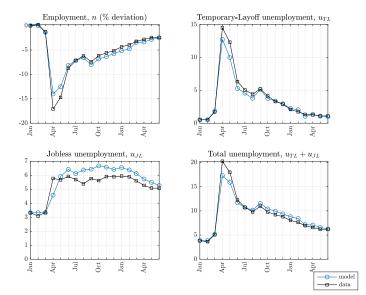
Recession Experiment, cont.

Estimate by SMM:

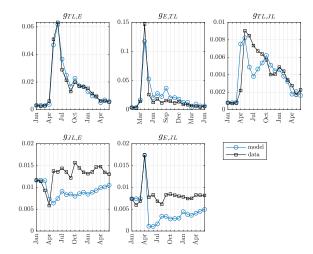
- T months of pandemic w/ 3 waves (for now)
 - $(5 \cdot T + 1)$ moments to match
 - (T+7) parameters to estimate
- System is highly overidentified

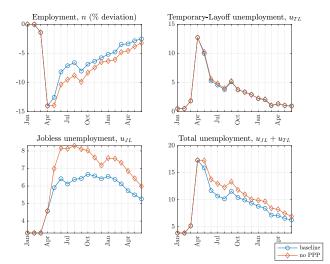

Parameter and Shock Estimates

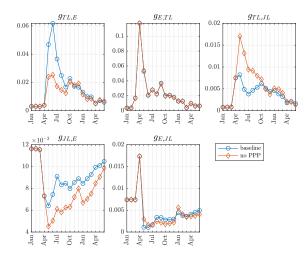
Parameters		
Variable	Description	Value
ρz	Autoregressive coefficient for persistent utilization shocks	0.7651
ξ	Adjustment costs for workers on lockdown	0.4988
$1 - ho_{r\phi}$	Probability of exogenous loss of recall for workers in temporary unemployment	0.3671


Shocks

Description	Value
Persistent utilization shock, April 2020	-10.28%
Transitory utilization shock, April 2020	-0.90%
Persistent utilization shock, September 2020	-4.23%
Persistent utilization shock, January 2021	-9.56%


Parameter and Shock Estimates, cont.


Covid Onset, Stocks


Covid Onset, Gross Flows

Policy Counterfactual: No PPP, stocks

Policy Counterfactual: No PPP, flows

PPP takeaway

- PPP achieved sizeable employment gains
- Immediate term: May to September 2020
 - Achieved average monthly employment gains of 2.14%
 - Doubled cumulative recalls
- Longer term
 - Smaller persistent employment gains
 - Avg. monthly empl. at least 1% higher through May 2021
- Employment gains came from recalls
 - PPP preserved ties btwn firms and workers in u_{TL}
 - Fulfilled mandate

A Tale of Two Unemployment Rates: US vs. EA in Covid

- Unemployment measured differently, e.g. temporary laid off workers
- Temporary laid off workers counted among the unemployed in the US and among the employed in the EA
- 2 counterfactual scenarios:
 - 1. TL counted among the employed also in the US (middle panel)
 - 2. TL counted among the unemployed also in the EA (right panel)
- But differences exist in TL definitions: more attachment to job in EA