Asset Purchases in a Monetary Union with Default and Liquidity Risks

Huixin Bi , Andrew Foerster, and Nora Traum

FRB Kansas City, FRB San Francisco, and HEC Montréal

December 19, 2023

The 6th Biennial ECB Fiscal Policy Conference

Motivation

- Financial market fragmentation can impair the transmission of monetary policy [Schnabel (May 2023) and others].
- ECB has asset purchase programs to address market fragmentation driven by default and liquidity risks, i.e. OMT and TPI.
- How do default risks, when interacted with liquidity risks, impact the economy, and how useful are asset purchases to counter them?
- We build a two-country monetary-union model with both risks.
- Deterioration in macro fundamentals \rightarrow default risks $\uparrow \rightarrow$ liquidity risks \uparrow.

Motivation

- Financial market fragmentation can impair the transmission of monetary policy [Schnabel (May 2023) and others].
- ECB has asset purchase programs to address market fragmentation driven by default and liquidity risks, i.e. OMT and TPI.
- How do default risks, when interacted with liquidity risks, impact the economy, and how useful are asset purchases to counter them?
- We build a two-country monetary-union model with both risks.
- Deterioration in macro fundamentals \rightarrow default risks $\uparrow \rightarrow$ liquidity risks \uparrow.
- Findings:
- Both risks dampen economic conditions following an increase in government debt.
- The magnifying effect from liquidity risks is far more consequential, making asset purchases markedly more effective in the presence of liquidity risks.

Two-Country Model

Model Overview

Home country:

- Government sets taxes and public expenditures and can issue bonds.
- Default risks: follow an endogenous regime switching process [Bi and Traum (2012)].
- Financial intermediaries [Gertler and Karadi (2011)]:
- Channel funds from households to Home government and firms.
- Liquidity risks: tightness of incentive constraint can vary with default probability.

Foreign country:

- Abstract from segmented financial market (no financial intermediaries, no default/liquidity risk).

Union-wide monetary policy:

- Follow Taylor rule and can purchase government bonds.

Model Overview

Home Government

- Budget constraint:

$$
\rho_{H, t} g+\left(1-\Delta_{t}\right)\left(1+\kappa^{b} Q_{t}^{b}\right) \frac{b_{t-1}}{\pi_{t}}=Q_{t}^{b} b_{t}+t_{t}+\tau^{i} p_{t}^{w} y_{t}+\tau^{c} c_{t}
$$

- Lump-sum tax follows fiscal rule:

$$
\frac{t_{t}-t}{t}=\phi_{t} \frac{Q_{t-1}^{b} b_{t-1}-Q^{b} b}{Q^{b} b}
$$

- Government may default on bonds by taking a haircut δ_{b} :

$$
\Delta_{t}= \begin{cases}\delta_{b}, & \text { if default } \\ 0, & \text { otherwise }\end{cases}
$$

- Default probability follows a logistic function of debt-GDP ratio s_{t} and macroeconomic shocks o_{t} :

$$
\operatorname{Pr}\left(\operatorname{def}_{t}=1 \mid o_{t-1}, s_{t-1}\right)=\frac{\exp \left(\eta^{0}+\eta^{1} o_{t-1}+\eta^{2} s_{t-1}\right)}{1+\exp \left(\eta^{0}+\eta^{1} o_{t-1}+\eta^{2} s_{t-1}\right)}
$$

Default Risks

- Default probability increases with debt-GDP ratio.
- Deterioration in macro fundamentals also shifts the distribution of fiscal limits.

Home Firms and Households

- Wholesale firms:
- Issue long-term private bonds to finance private investment with a loan-in-advance constraint [Sims and Wu (2021)].

$$
\begin{gathered}
\eta^{\prime} \nu_{t}^{k} I_{t}^{\omega} \leq Q_{t}^{f}\left(f_{t}-\kappa^{f} \frac{f_{t-1}}{\pi_{t}}\right) \\
K_{t}=I_{t}^{w}+(1-\delta) K_{t-1}
\end{gathered}
$$

- Produce output using labor and private capital.
- Home investment producers:
- Assemble investment with adjustment costs.
- Households:
- Hold deposits at financial intermediary as well as hold one-period cross-region bond.

Financial Intermediary

- Balance sheet [Gertler and Karadi (2011)]:
- Collect deposits and purchase government \& private bonds.

$$
Q_{t}^{b} b_{t}^{j}+Q_{t}^{f} f_{t}^{j}=d_{t}^{j}+n_{t}^{j}
$$

- Net worth depends on realized returns on holding bonds, $R_{t}^{b}=\left(1-\Delta_{t}\right) \frac{1+\kappa^{b} Q_{t}^{b}}{Q_{t-1}^{b}}, R_{t}^{t}=\frac{1+\kappa^{t} Q_{t}^{t}}{Q_{t-1}^{t}}$.
- Maximize expected net worth with a survival rate of σ :

$$
\begin{aligned}
\max & v_{t}^{j}=E_{t} \Lambda_{t, t+1}\left((1-\sigma) n_{t+1}^{j}+\sigma V_{t+1}^{j}\right) \\
\text { s.t. } & v_{t}^{j} \geq \eta_{t}^{v}\left(Q_{t}^{f} f_{t}^{j}+Q_{t}^{b} b_{t}^{j}\right)
\end{aligned}
$$

- Liquidity channel: η_{t}^{v} can vary with default risks [Bocola (2016)].

$$
\eta_{t}^{v}=\eta^{v}\left[1+\phi_{\eta} \operatorname{Pr}\left(d e f_{t}=1 \mid o_{t-1}, s_{t-1}\right)\right]
$$

- The first-order conditions for bonds:

$$
E_{t} \underbrace{\Lambda_{t, t+1} \Omega_{t}}_{\text {lev. adj. discount }} \frac{R_{t+1}^{i}-R_{t}^{d}}{\pi_{t+1}}=\frac{\lambda_{t}^{v}}{1+\lambda_{t}^{v}} \eta_{t}^{v} \quad(i=f, b)
$$

The Rest of the Model

- Foreign economy:
- Abstract from segmented financial market: no financial intermediaries, no default/liquidity risks.
- Households hold government bonds and invest in private firms directly.
- Monetary policy:
- Union-wide Taylor rule.
- Unconventional policy of asset purchases:

$$
T_{t}^{c b}=R_{t}^{b} Q_{t-1}^{b} \frac{b_{t-1}^{b, c b}}{\pi_{t}}-Q_{t}^{b} b_{t}^{b, c b}
$$

When utilized, asset purchased determined by the rule:

$$
b_{t}^{c b}=b^{c b}+\phi_{c b}(\ln \underbrace{R_{t}^{\text {spread }}}_{E_{t} R_{t+1}^{b}-R_{t}^{d}}-\ln R^{\text {spread }})
$$

Solution Method

- Use perturbation approach for solving endogenous regime-switching models [Benigno, Foerster, Otrok \& Rebucci (2020)].
- Default regimes:
- If default, $d e f_{t}=1$; otherwise, $d e f_{t}=0$.

$$
\operatorname{Pr}\left(\operatorname{def}_{t}=1 \mid o_{t-1}, s_{t-1}\right)=\frac{\exp \left(\eta^{0}+\eta^{1} o_{t-1}+\eta^{2} s_{t-1}\right)}{1+\exp \left(\eta^{0}+\eta^{1} o_{t-1}+\eta^{2} s_{t-1}\right)}
$$

- Liquidity channel:
- The time-varying liquidity constraint depends on default probability:

$$
\eta_{t}^{v}=\bar{\eta}^{v}\left[1+\phi_{\eta} \operatorname{Pr}\left(d e f_{t}=1 \mid o_{t-1}, s_{t-1}\right)\right]
$$

Results

Analysis

Questions:

- How do default risks, when interacted with liquidity risks, impact the economy?
- How does each channel (default vs. liquidity) contribute?
- How effective are asset purchases?

Scenarios:

1. Consider a simpler case with an increase in home government debt.
2. Consider a negative demand shock to home economy.

Simpler Case: Home Country

Simpler Case: Home vs. Foreign

Impact from Default vs. Both Channels

Asset Purchases with Default vs. Both Channels

Analysis

The simpler case with an increase in home government debt:

- Both default and liquidity risks dampen economic conditions.
- The impact from liquidity risks is far more consequential, thus asset purchases are more effective in this case.

Now consider a negative demand shock to home country:

- A negative investment efficiency shock
\rightarrow deterioration in economic conditions
\rightarrow increase government debt \& shift the distribution of fiscal limits lower.

Negative Demand Case: Default vs. Both Channels

Asset Purchases with Default vs. Both Channels

Conclusion

- While both risks dampen economic conditions, the magnifying effect from liquidity risks appears far more consequential.
- Asset purchases are more effective in the presence of liquidity risks.
- Next step:
- Introduce financial intermediary to the foreign country block, and explore the cross-country spillover through the financial channel.
- Question: How would a union-wide liquidity shock affect countries with weak macro fundamentals?

Appendix

Simpler Case: Baseline vs. Asset Purchases

Households

- Consumption c_{t} aggregates Home and Foreign consumption sub-baskets, $c_{H, t}$ and $c_{F, t}$, in Armington form:

$$
c_{t}=\left[\alpha_{H}^{\frac{1}{\phi}}\left(c_{H, t}\right)^{\frac{\phi-1}{\phi}}+\left(1-\alpha_{H}\right)^{\frac{1}{\phi}}\left(c_{F, t}\right)^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{\phi-1}}
$$

- Budget constraint:

$$
d_{t}+z_{t}+c_{t}\left(1+\tau^{c}\right)=\frac{R_{t-1}^{d} d_{t-1}}{\pi_{t}}+\frac{R_{t-1}^{d} z_{t-1}}{\pi_{t}}+w_{t} l_{t}+\Pi_{t}^{f}+d i v_{t}-x-t_{t}+T_{t}^{c b}
$$

- Endogenous discount factor ensures stationarity [Uzawa (1968); Schmitt-Grohe and Uribe (2003)]

Wholesale Firms

- Issue long-term private bonds to finance private investment with loan-in-advance constraint [Sims and Wu (2021)]

$$
\begin{array}{ll}
\left(\zeta_{t}^{1}\right) & K_{t}=I_{t}^{N}+(1-\delta) K_{t-1} \\
\left(\zeta_{t}^{2}\right) & Q_{t}^{\prime}\left(f_{t}-\kappa^{\prime} \frac{f_{t-1}}{\pi_{t}}\right) \geq \eta^{\prime} p_{t}^{k} l_{t}
\end{array}
$$

- Produce output using labor and private capital

$$
y_{t}^{\omega}=\left.A_{t}\right|_{t} ^{1-\alpha} K_{t-1}^{\alpha}
$$

- Optimal conditions:

$$
\begin{aligned}
\zeta_{t}^{1} & =p_{t}^{k}\left(1+\eta^{\prime} \zeta_{t}^{2}\right) \\
Q_{t}^{f}\left(1+\zeta_{t}^{2}\right) & =\beta E_{t} \Lambda_{t+1} \frac{1}{\pi_{t+1}}\left(1+\kappa^{t} Q_{t+1}^{f}\left(1+\zeta_{t+1}^{2}\right)\right) \\
\zeta_{t}^{1} & =\beta E_{t} \Lambda_{t+1}\left(\frac{p_{t+1}^{w} \alpha y_{t+1}}{K_{t}}\left(1-\tau_{t+1}^{\prime}\right)+(1-\delta) \zeta_{t+1}^{1}\right)
\end{aligned}
$$

Financial Intermediary

- Balance sheet [Gertler and Karadi (2011)]:
- Collect deposits from households and accumulate net worth.
- Purchase government bonds as well as corporate bonds.

$$
\begin{gathered}
Q_{t}^{b} b_{t}^{j}+Q_{t}^{f} f_{t}^{j}=d_{t}^{j}+n_{t}^{j} \\
n_{t}^{j}=\frac{R_{t-1}^{d} n_{t-1}}{\pi_{t}}+\left(R_{t}^{b}-R_{t-1}^{d}\right) \frac{Q_{t-1}^{b} b_{t-1}^{\prime}}{\pi_{t}}+\left(R_{t}^{f}-R_{t-1}^{d}\right) \frac{Q_{t-1}^{f} f_{t-1}^{j}}{\pi_{t}}
\end{gathered}
$$

- Realized returns on holding bonds:

$$
R_{t}^{b}=\left(1-\Delta_{t}\right) \frac{1+\kappa^{b} Q_{t}^{b}}{Q_{t-1}^{b}}, \quad R_{t}^{f}=\frac{1+\kappa^{f} Q_{t}^{f}}{Q_{t-1}^{f}} .
$$

Financial Intermediary

The first-order conditions are,

$$
\begin{gathered}
E_{t} \beta\left(c_{t}\right) \Lambda_{t, t+1} \Omega_{t+1} \frac{R_{t+1}^{t}-R_{t}^{d}}{\pi_{t+1}}=\frac{\lambda_{t}^{v}}{1+\lambda_{t}^{v}} \eta^{v} \\
E_{t} \beta\left(c_{t}\right) \Lambda_{t, t+1} \Omega_{t+1} \frac{R_{t+1}^{b}-R_{t}^{d}}{\pi_{t+1}}=\frac{\lambda_{t}^{v}}{1+\lambda_{t}^{v}} \eta^{v} \\
E_{t} \beta\left(c_{t}\right) \Lambda_{t, t+1} \frac{\Omega_{t+1}}{\pi_{t+1}} R_{t}^{d}=\frac{\phi_{t}}{1+\lambda_{t}^{\zeta}} \eta^{v}
\end{gathered}
$$

- λ_{t}^{\vee} measures the tightness of the costly enforcement constraint.
- $E_{t} R_{t+1}^{b}-R_{t}^{d}$: excess returns
- $\phi_{t}=\frac{Q_{t}^{f} f_{t}+Q_{t}^{p} b_{t}^{b}}{n_{t}}$: leverage ratio
- $\Omega_{t}=1-\sigma+\sigma \eta_{t}^{v} \phi_{t}$

