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Abstract

Local projections (LPs) are widely used in empirical macroeconomics to estimate im-
pulse responses to policy interventions. Yet, in many ways, they are black boxes. It
is often unclear what mechanism or historical episodes drive a particular estimate.
We introduce a new decomposition of LP estimates into the sum of contributions
of historical events, which is the product, for each time stamp, of a weight and the
realization of the response variable. In the least squares case, we show that these
weights admit two interpretations. First, they represent purified and standardized
shocks. Second, they serve as proximity scores between the projected policy inter-
vention and past interventions in the sample. Notably, this second interpretation
extends naturally to machine learning methods, many of which yield impulse re-
sponses that, while nonlinear in predictors, still aggregate past outcomes linearly via
proximity-based weights. Applying this framework to shocks in monetary and fiscal
policy, global temperature, and the excess bond premium, we find that easily iden-
tifiable events—such as Nixon’s interference with the Fed, stagflation, World War
I, and the Mount Agung volcanic eruption—emerge as dominant drivers of often

heavily concentrated impulse response estimates.
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Nontechnical Summary

Local projections (LPs) are a widely used statistical tool in economics to estimate how the
economy responds to policy interventions, such as unexpected shifts in government spend-
ing or monetary policy. However, LP estimates often function as a black box. It is unclear
what underlying mechanisms drive the results, or whether they genuinely reflect the histor-
ical events they appear to explain. This paper introduces tools to break down LP estimates
and reveal which past events contribute most to the impulse response function.

We propose a decomposition technique that expresses LP estimates as a sum of contribu-
tions from historical events. These contributions are determined by proximity weights, which
reflect how similar past policy changes are to the one being studied. In simple terms, this
method allows researchers to see whether the estimated response is based on a broad range
of historical experiences or just a few key episodes. This weighting approach applies not
only to traditional, linear LP methods but also to more complex machine learning (ML) mod-
els. By using the same weighting framework, ML-based impulse responses can be directly
compared to their linear counterparts, uncovering nonlinearities in the underlying dynamics.

The empirical analysis includes several key economic applications, including the effects

of monetary policy, fiscal policy, global temperature, and financial shocks.

* Monetary Policy: Estimates of how inflation reacts to unexpected changes in monetary
policy are dominated by the stagflation period of the 1970s. Misinterpretations of the
latter explain why simple linear models mistakenly suggest that raising interest rates

increases inflation—known as the “price puzzle”.

* Fiscal Policy: Analyzing estimates of the economic impact of government spending
reveals that they are overwhelmingly driven by World War II and the Korean War. This
raises concerns about the estimates’ validity, especially when it comes to predicting the

effects of fiscal policy in recent times.

¢ Climate Shock: The credibility of global temperature shocks” impact on world output
appears to vary across horizons. While medium-term effects are largely robust and
supported by various events in the sample, the long-term economic impact is mainly

driven by a few extreme weather episodes, such as the Mount Agung volcanic eruption.

¢ Financial Shocks: Comparing linear and nonlinear responses reveals which historical
events drive size- and sign-dependent effects of financial shocks, with key differences
emerging in the pre-2000 period and the Great Financial Crisis. Notably, the sparser

proximity scores from the ML-based approach improves interpretability.
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1 Introduction

Local projections-based estimates of impulse response functions (IRFs), now ubiquitous in
empirical macroeconomic analysis, are not regarded as black boxes. Yet, to an appreciable
extent, they are. It is often unclear what transmission mechanism lies behind the curve, or
how the arbitrary inclusion/exclusion of control variables shapes the retrieved causal effects.
It is also difficult to know whether local projections (LP) estimates used to tell a cohesive
story about certain economic events are actually sourced from those events.

To elucidate this and other questions, we introduce a new decomposition of local projec-
tion estimates into a sum of contributions from historical events. Each contribution is the
product of a weight and the corresponding realization of the response variable for every time
point in the sample. First, this decomposition serves as a powerful diagnostic tool, distin-
guishing whether an estimate is broadly supported by a wide range of historical events or
dominated by a narrow set of episodes. This provides an off-the-shelf external validity as-
sessment before using estimates to guide policy decisions or complement economic analysis
with theoretical models explaining the empirical facts. Second, analyzing individual his-
torical weights and contributions reveals whether the evidence as perceived by the model
conforms with external narrative knowledge: do the episodes we think are driving the causal
effect estimates actually do s0? As such, it can prove useful to the “empirical debugging”
process. For instance, when economists are faced with puzzles or other varieties of counter-
intuitive empirical findings, the decomposition can identify problematic periods or events
that disproportionately contribute to the unexpected outcome.

In the case of LP estimated through least squares, the weights have two interpretations.
The first, established through the well-known Frisch-Waugh-Lovell theorem, shows that the
weights represent standardized, purified shocks that account for the influence of control
variables. The second interpretation, inspired by the dual solution to least squares prob-
lems, reveals that the weights correspond to pairwise proximity scores between the pro-
jected policy intervention and the historical interventions in the sample. As put forward
in Goulet Coulombe (2025), ordinary least squares (OLS) can also be framed as a similarity-
based estimator in a transformed regressor space. We extend these insights from predictions
to coefficients, by showing that the weights underlying our decomposition correspond to Eu-
clidean inner products between the representation of the intended policy on an orthogonal
basis and the representations of past interventions in the same space. Therefore, OLS-based
LPs implicitly construct an embedding of past interventions and predict the effect of a new
one as a weighted average of past outcomes, giving greater weight to those associated with

interventions that lie closer to the projected intervention in the “intervention space”.
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The proximity interpretation of weights also enables us to extend the applicability range
beyond linear models. Many machine learning (ML) algorithms produce local projections
that, while nonlinear in regressors, are still linear combinations of the response variable with
weights corresponding to proximity scores. This means that, through our framework, nonlin-
ear ML-based impulse responses can be decomposed and interpreted in the same way as those
from traditional linear methods. Weights differences between linear and nonlinear methods
are attributable to different notions of proximity as constructed by models, and given the
typically short length of macroeconomic time series, are easy to compare graphically. Over-
all, our decomposition offers a pathway to integrating these more flexible methods into IRF
analysis while maintaining a satisfactory level of transparency.

Lastly, we propose LP concentration statistics. Inspired by prototypical measures of
wealth inequality, we monitor the share of total weights (contributions) accounted for by
the top 10% of weights (contributions). While some degree of concentration is inevitable,
our applications reveal that certain IRFs exhibit an alarmingly high level of it. Inescapably,

elevated concentration threatens external validity.

APPLICABILITY. In the empirical analysis, we focus on OLS and Random Forest, the latter
being a powerful, nonlinear, off-the-shelf machine learning algorithm. While not explicitly
used here, the decomposition framework is fully compatible with any estimator that is, or
can be rewritten as, a linear combination of outcomes. This includes kernel methods, boost-
ing, and neural networks, drawing on tools developed in Goulet Coulombe et al. (2024). The
same applies to two-stage least squares, frequently used alongside local projections. In that
context, our tools could be applied separately to both the first and second stage regressions,
with the second stage being conceptually closest to our empirical application. The tool could
also be applied in a panel data setting to decompose how both time periods and individual
units contribute to the estimated effects. Finally, further thinking is required to extend the
framework to impulse response estimators that are not linear aggregations of a single out-
come variable—such as certain Bayesian methods or VARs, for which we sketch a possible

route using Shapley values in the conclusion.

FOUR APPLICATIONS. We apply this decomposition to LPs obtained using various types of
shocks, including monetary policy, fiscal policy, global temperature, and financial shocks.
For monetary policy, we find that impulse responses derived from vector autoregressions
(VAR) identified via the Cholesky decomposition—often displaying the familiar price puzzle,
where inflation rises in response to a contractionary monetary policy shock—are confounded
by misinterpretations of stagflation episodes in the 1970s. Expanding the information set in
the LP, in the spirit of Bernanke et al. (2005), shifts the inflation response in the expected
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direction by nullifying or inverting problematic contributions from these key 1970s episodes.
Shocks from Romer and Romer (2004) produce correctly signed impulse responses without
requiring a plethora of controls. However, this is achieved not by canceling counterintuitive
episodes found in the Cholesky VAR, but by forcefully offsetting them with stronger mid-
1970s negative contributions. We find that these responses are almost entirely driven by
politically motivated monetary loosening episodes of the 1970s.

Further clarity emerges from Random Forest estimates, which allow for nonlinearities in-
cluding shock-sign dependence. Consistent with the results of the linear model, we find little
to no evidence from contractionary Romer and Romer (2004) shocks. In contrast, the nonlin-
ear LP for unexpected loosening shocks eliminates the early horizon price appreciation seen
in the linear model, then realigns with the linear estimate at mid-range horizons and beyond.
We find the underlying proximity weights to be heavily concentrated. Most of the evidence
is attributable to two well-documented “Nixon’s calling” episodes. While this concentration
supports the instrument’s validity—these appear to be genuine exogenous interventions to
an otherwise systematic policy—it raises questions about the external validity of the esti-
mates, particularly if used to anticipate the effects of contractionary monetary policy nearly 50
years later.

For fiscal policy, we show that the state-dependent fiscal multipliers estimated by Ramey
and Zubairy (2018) are almost entirely driven by a single historical event—World War II—in
the recession scenario. The top 10% of weights account for 66% of the total weighting, and the
top 10% of contributions represent 90% of the total absolute contributions. In the expansion
scenario, the estimate is only slightly less concentrated, combining contributions from the
later stages of World War II and the Korean War. Therefore, using estimates of fiscal policy
identified by military spending shocks can be a delicate enterprise, as the effective number
of observations supporting them is limited and those are concentrated in the distant past.

We also examine the effects of global temperature shocks on world GDP, based on Bilal
and Kénzig (2024). The original study finds that a 1°C increase in global temperature leads
to a peak GDP decline of 12% after six years, with negative effects still observable a decade
later. These estimates appear strikingly large, particularly in comparison to prior studies doc-
umenting modest effects of local temperature increases on economic growth (Nordhaus, 1992;
Dell et al., 2012). Our analysis highlights key climatological events—such as the 1964 Mount
Agung eruption and the late-1990s El Nifio and La Nifia cycles—as particularly influential on
the estimated local projection coefficients, as they coincide (a decade later) with the peak of
post-war economic growth in the former case and the height of the China boom in the latter.
These observations motivate additional robustness checks, all of which reduce the intensity
of the IRF. While medium-term effects remain sizable, our findings indicate that the effects
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of global temperature shocks on world GDP may be more transitory than depicted in the
original study.

Finally, for financial shocks, we compare linear and nonlinear responses, emphasizing
how specific historical events are upweighted to generate the size- and sign-dependent im-
pulse responses commonly observed in the literature. The findings confirm that large nega-
tive financial shocks have disproportionate effects on the economy, with the nonlinear model
detecting a faster and more pronounced response than the linear counterpart. Perhaps sur-
prisingly, the nonlinear model offers comparatively greater interpretability through its prox-
imity weights. While the linear model aggregates a dense combination of many events, the
nonlinear approach isolates a sparse historical structure. Large negative shock episodes form
a distinct cluster, while other events are grouped as a set of small positive shocks of similar
magnitude. As a result, the average nonlinear effect is approximately the difference between
the means of these two groups, making its historical foundations easier to communicate than

those of the linear model.

LITERATURE ¢ THE ECONOMETRICS OF LOCAL PROJECTIONS. Most existing econometric
research has focused on the statistical properties of local projection estimators, particularly
their bias-variance trade-off relative to VARs (Kilian and Kim, 2011; Herbst and Johannsen,
2024; Li et al., 2024), their large-sample behavior (Plagborg-Meller and Wolf, 2021), and infer-
ence (Montiel Olea and Plagborg-Meller, 2021). In this paper, we propose tools to analyze a
local projection estimate.

For this different objective, the literature is fairly scant. Dufour and Renault (1998) and
Cloyne et al. (2023) explore the decomposition of estimated impulse responses into direct and
indirect effects, offering insights into the plausible transmission mechanisms underlying the
responses—an approach reminiscent of VAR studies investigating the nature of such mecha-
nisms (Bernanke et al., 1997; Bachmann and Sims, 2012). Additionally, other standard inter-
pretive tools from VAR analysis, such as forecast error variance decompositions, have been
adapted for local projections (Gorodnichenko and Lee, 2020). Our framework approaches the
problem from another angle. It does not focus on the mechanism or the economic structure
behind the causal effect, but rather on how the estimates aggregates microscopic pieces of
narrative evidence into a single number. Those distinct interpretative goals are not irrecon-
cilable: an ideal estimate should be (i) backed by an economically plausible mechanism, and
(ii) statistically supported by a diverse set of (preferably intuitive) data points.

Despite their semantic similarity, our approach also differs from historical decompositions
in vector autoregressions. The latter attribute realized values to specific shocks, offering a

feature-based decomposition of the observed dependent variable at a given point in time. In
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contrast, we explain how different realizations of a single shock shape the full-sample coefficient
estimate, shifting the focus from explaining outcomes to understanding parameter formation.

Recent papers have explored themes related to our investigation, particularly around in-
strument relevance and robustness concerns when utilizing certain shock series in LPs. Hu-
ber et al. (2024) examine the time-varying volatility of instruments, introducing the notion of
time-varying relevance. Similarly, in our weight series, the concept of heterogeneous instru-
ment relevance emerges naturally, as some data points contribute far more to the final causal
estimate than others. Barnichon and Mesters (2025) also highlight that the rarity of truly ex-
ogenous shocks creates an inevitable trade-off between credibility and efficiency. They show
that fiscal multipliers derived from military spending shocks and the effects of monetary
policy identified through narrative shocks can be fragile. To address this, they propose a
technique to reinforce valid but weak instruments with potentially less valid ones.

Koleséar and Plagborg-Maeller (2024) provide conditions under which linear LP estimates
remain reliable even when the data-generating process (DGP) is nonlinear. They use an alter-
native weighting scheme to illustrate how different IRF estimates depend on positive vs. neg-
ative shocks and on distinct regions of the (non-Gaussian) shock distribution. These meth-
ods are inspired by Yitzhaki (1996)’s work (later generalized in Angrist and Krueger (1999)),
which showed that linear least squares coefficients can be expressed as weighted sums of
slopes between adjacent observations, with weights determined by the empirical distribution
of the independent variable. In this paper, we propose a different weighting scheme where
the coefficients of interest are weighted sums of the target variables, with weights having
the aforementioned intervention-proximity score meaning. This approach applies directly
to both linear methods and nonparametric, nonlinear methods, such as those from machine
learning. As such, our tools allow for a more proactive foray into the nonlinear world, as
they help in understanding nonlinearities and time-variation captured flexibly by models
featuring a limited set of functional form assumptions. Additionally, we emphasize time se-
ries visualization through cumulative contributions, offering a narrative understanding of

the estimate by highlighting key events that drive results.

LITERATURE ® INTERPRETABLE MACHINE LEARNING. The rapidly expanding field of ma-
chine learning interpretability seeks to understand what drives outputs from opaque statis-
tical models. Much of this literature emphasizes post-hoc methods for explaining how pre-
dictors influence predictions in off-the-shelf ML tools, with notable applications in macroe-
conomic forecasting by Buckmann and Joseph (2023) and Borup et al. (2022). We share a
conceptual connection with this literature—namely, that a prediction or coefficient estimate

is not the end of the story and that it is equally important to understand how algorithms,
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whether simple or complex, arrive at their results.

Our approach differs from this set of techniques in one key aspect. Rather than focusing
on how features drive predictions, we center on how historical episodes influence a causal
estimate. This perspective aligns with two recent contributions in the field. The first is the
work of Goulet Coulombe et al. (2024), which represents macroeconomic forecasts from vari-
ous ML algorithms as a portfolio of training target realizations, weighted by proximity scores
reflecting similarities between current and past economic conditions. Our paper extends this
dual interpretability framework—initially developed for machine learning forecasts (condi-
tional expectations)—to coefficient estimates (differences of conditional expectations).

The second recent advance considers the decomposition of metrics beyond raw predic-
tions. For example, Borup et al. (2022) and Goulet Coulombe et al. (2023) decompose by
features metrics such as root mean-squared errors, Sharpe ratios, and t-statistics using a fairly
involved Shapley values-based scheme. Our contribution aligns with these approaches in
that we seek to explain not just predictions, but also other consequential model outputs, such
as coefficients. Yet everything we propose comes at little to no additional computational cost
beyond estimating the model itself—a stark contrast with notoriously demanding Shapley

value-based approaches, such as those in Goulet Coulombe et al. (2023).

LITERATURE e ROBUST STATISTICS, REPRESENTER THEOREMS, AND TIME-VARIATION.
There are two distinct strands of mostly theoretical literature that decompose predictions or
estimates using observation-specific weights. In both cases, the primary goal is not inter-
pretability.

The first is influence functions, a concept from robust statistics (Hampel, 1974; Cook and
Weisberg, 1980) with a certain number of applications in econometrics, often for inference
purposes (Chernozhukov et al., 2018; Farrell et al., 2020). Influence functions assess the
fragility of estimates to marginal deviations in the estimation sample and, in this regard,
share a common objective with our approach, particularly with cumulative contributions
from linear models. However, our reported metrics differ from the traditional influence func-
tion paradigm, as we do not estimate the influence of an observation as a pair of target and
regressors—a fairly complicated objective in a time series context—but rather the impact of
each purified shock. Additionally, we emphasize visualization through time series plots that
accumulate into the final estimate, which greatly facilitates the extraction of relevant infor-
mation based on historical analysis.

The second is the representer theorem from machine learning theory. It states that any
minimizer of a regularized empirical risk functional over a reproducing kernel Hilbert space

(RKHS) can be written as a finite linear combination of kernel functions evaluated at the train-
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ing points (Kimeldorf and Wahba, 1971; Scholkopf et al., 2001). With interpretability rather
than reduced computation in mind, this paper extends these insights to the decomposition of
coefficients rather than predictions and provides a more explicit economic interpretation of
the “finite linear combination.” It does so by integrating the usual dual solution parameters
into weights applied to outcomes and proposing a cohesive interpretation of least squares-
based coefficients as intervention-proximity estimators in an orthonormal regressor space.
Although some goals overlap, cumulative contributions also differ from methods that as-
sess robustness to sample choices, such as expanding/rolling window approaches and time-
varying parameter models. Contributions mechanically sum to the estimate of interest, and
weights have the advantage of being derived from a single consistent model utilizing the
entire sample. The visual analysis we employ may also evoke the CUSUM test, where the
cumulative sum of residuals in a well-specified model remains within confidence bands de-
rived from Brownian motion. Similarly, we expect cumulative contributions to progress more

or less linearly from zero toward the estimate’s value, unless the IRF is highly concentrated.

LITERATURE ¢ NONLINEAR AND NONPARAMETRIC LOCAL PROJECTIONS. There is grow-
ing interest in exploring more sophisticated conditional expectations beyond those offered by
OLS. For example, tree-based ensembles have been employed in Mumtaz and Piffer (2022),
Paranhos (2024), and Hauzenberger et al. (2025) to obtain nonparametric LP estimates, mov-
ing past the traditionally dominant focus on manually defined nonlinearities (Ramey and
Zubairy, 2018; Paul, 2020; Gongalves et al., 2024; Gongalves et al., 2024). However, as is of-
ten the case with off-the-shelf machine learning algorithms, it remains unclear what these
methods uncover that cannot be captured by more explicitly specified models. Our contri-
bution lies in clarifying which events are emphasized or de-emphasized in fancier estimates,

offering a way to both probe and communicate ML-based results.

OUTLINE. The paper is organized as follows. Section 2 introduces the historical foundation
of LPs, offers two interpretations of the weights, and extends these insights to ML-based LPs.

Section 3 presents empirical results across four applications. Section 4 concludes.

2 Historical Foundations of Local Projections

We briefly review LPs here and refer the reader to Jorda and Taylor (2024) for a more detailed
discussion. First, define y; as the outcome variable of interest at time f. The controls, denoted
by Z;, form a vector comprising exogenous or predetermined variables, including lagged val-

ues of both the outcome y; and the policy intervention s;. Local projections provide a method
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to estimate the following population object. Formally, the impulse response is defined as
IRFs (1, 6) = Elysyp | st = ° + 8 Zi) — Elyen | st =% Z), 1)

where h = 0,1, ..., H, and J represents the size of the intervention. This expression captures
how an intervention at time t influences the average outcome y;,, at a future horizon #,
relative to a baseline scenario with no intervention. A common convention is to normalize
5 = 1 or a one standard deviation of s;, with a reference scenario of s° = 0. Although shock
size and signs do not matter in linear local projections, they do in a more general nonlinear
nonparametric context, which we consider in Section 2.3.

Provided s; is exogenous, as in the case of preidentified shock series like monetary or fiscal
policy shocks, the linear LP can be easily estimated through a loop of ordinary least squares

(OLS) regressions. The LP of y;,j, on s; can be estimated with the regression
yf+”l:€h+5hst+7]/flzt+vt+hl h:011/---/H/ (2)

where ¢, defines the intercept, 7 the coefficients on controls, and v, the idiosyncratic er-
ror term. It follows that IRF; ,,(h,1) = B, by definition. By virtues of OLS being a linear

estimator in y,, we have that

R,y (h,1) = B = [(XX) X0y, ©)

-

~N~
w

where X € RT*X and y, € RT is the training data.! It is assumed that s; is placed in the
second column of X = [1sZ], so the notation {2,:} refers to the second row of the projec-
tion matrix—i.e., the weights associated with s;. By properties of projection and annihilator
matrices, 1'w = 0 because X includes an intercept. The expression of fj, as a weighted av-
erage of outcomes follows directly from the least squares formula and is noted, for instance,
in Davidson and MacKinnon (2004).> Our key contribution is the introduction of w for inter-

pretation purposes, along with its (eventual) alternative interpretation as proximity scores,

1 As a notational convention, bold symbols denote quantities spanning multiple observations, whether vec-
tors or matrices. Vectors associated with a single observation (e.g., Z;) are left unbolded.

2Throughout the paper, all standard linear regression assumptions required for the consistency of point es-
timates are assumed to hold, as is customary in local projection applications. This includes coefficient stability,
shock exogeneity, and inclusion of all relevant regressors. Importantly, these assumptions are not required for
the decomposition itself to hold: the decomposition is purely mechanical and applies to any OLS estimate, re-
gardless of its causal interpretation. What these assumptions ensure, rather, is that the object being decomposed
is worth decomposing at all. Moreover, issues such as serial correlation and heteroskedasticity are typically ad-
dressed only at the inference stage, as they do not compromise consistency. Our decomposition of point estimates
follows suit, reflecting how evidence is aggregated across the sample under OLS assumptions.
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which establishes a connection to machine learning methods that are linear in y,,.

In macroeconomic and financial forecasting studies, it is common to analyze forecasting
performance (often measured by MSE) using time series plots of cumulative sums of squared
errors (Welch and Goyal, 2007). These plots help identify which historical episodes contribute
most to a model’s under- or out-performance. We can adopt a similar approach here, but for

our estimated dynamic causal effects, as given by:

T T
IRFsy(h,1) = ) wiyiyp = ) cin- (4)
tle t=1

Therefore, beyond the visualization of w; as a time series, we can examine contributions cy, as a
cumulative time series, Cy;, = ZL ¢y, which converges to ﬁh when T = T. As demonstrated
in the empirical section, this straightforward plotting method proves highly effective in di-
agnosing empirical issues, such as the price puzzle when estimating the effects of monetary
policy shocks, and in developing appropriate solutions.

While much attention has been paid to the (small- or large-sample) statistical properties
of this estimator (e.g., Kilian and Kim 2011; Plagborg-Meller and Wolf 2021; Gongalves et al.
2024; Li et al. 2024; Herbst and Johannsen 2024), comparatively little effort has been devoted
to anatomizing estimates obtained from a fixed sample. The vector w and its byproducts
are especially informative in this regard, arguably more so than 7}, in (2), whose meaning
becomes increasingly viscous beyond & = 1. Moreover, the latter quantity changes with h
whereas the former is fixed across horizons for a linear LP.> Lastly, w has a more universal
appeal than regression coefficients as it applies just as much to models with no coefficients.
Indeed, many modern nonlinear conditional mean functions estimators are nonlinear in X
but linear in y,, meaning they can also be represented as the product of a w and y,;. The

question is, how should we think about w; as a time series?

2.1 w; as a Standardized and Purified Shock Series

In many linear applications, w; must, by construction, closely resemble s;. This is particularly
true if s; is a well-defined shock series, i.e., one that is unpredictable by its own lags or those

of other variables, and orthogonal to other variables at time t. If s; satisfies these conditions

3Note that wy, = w for all 1 is a specificity of OLS because X does not change. However, in a more general
context of a machine learning model, where variables are selected and nonlinear transformations are created
separately for each £, this will not be the case.
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exactly and is normalized to have variance 1 (as is often the case), we can write:
IRFs%y h 1 Z StYi+h- )

By construction, I/RT:S_>y(h, 1) is an unbiased estimator for IRFs_,,(h, 1), and so is each term
Ctn = StYr4p- In this special case, the OLS estimator effectively reports an equally-weighted
ensemble of unbiased but high-variance estimators of the causal effect. In this sense, it is
directly analogous to cumulative squared error plots that sum to the mean-squared error.

That being said, in practice, s; often requires further purification, which justifies the in-
clusion of controls in the regression. Furthermore, incorporating relevant predictors—most
notably, lags of the outcome variable—into the LP can lead to substantial efficiency gains by
reducing the variance of the residuals. It is still possible in this environment to interpret w in
the spirit of (5), leveraging a variation of the Frisch-Waugh-Lovell (FWL) theorem to derive a
simple summation formula.

A numerically equivalent 3, can be obtained by running a regression where v, remains
the target, and the sole regressor is §;, the residual from regressing s; on all other variables in

the original regression, Z;. Since this second regression is univariate, we have:

(6)

where M7z is the annihilator matrix projecting onto the space orthogonal to that spanned by
Z. We can define

St

* = 7
5t Var(5;) @
and recover a summation formula analogous to (5):
1 T
=7 2 StYtth (8)

where s} is the standardized, purged (from Z) version of the shock s;. Thus, with s; as the
new shock series, all the insights related to (5) remain valid. Specifically, ﬁh continues to
represent an equally weighted ensemble of unbiased, high-variance estimates of the causal
effects, and these individual contributions can be analyzed as they cumulatively form ﬁh
Note that, unlike the standard statement of the FWL theorem, the formulation in (6)—
(8) does not residualize y;,, with respect to Z, preserving a more direct connection to the
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simpler case in (5), which also applies upweighting and downweighting to raw y;,;,. Due to
the idempotency of Mz, this representation is numerically equivalent to the classical double
residualization approach.

In this paper’s framework, shutting down a particular ¢y, corresponds to turning off the
purified shock s; at a specific time. This is a reasonable experiment because purified shocks
are uncorrelated by construction. Thus, the approach does not evaluate the influence of a
specific time point, but rather the influence of each realized intervention. In this sense, it is
more palatable than the alternative perspective, where s; captures the influence of the heav-
ily autocorrelated y,,, on 3. In Section 2.5, we provide a more detailed discussion on the
connection between our approach and influence functions, leverage, as well as expanding
and rolling window estimation.

The formulation of B, as a weighted sum of outcomes using purified shocks, as in (8),
opens a window onto broader methodological debates surrounding the identification of
macroeconomic shocks. When s; is truly exogenous, we expect s; ~ s;, so the weights w;
closely track the original shock series. This alignment is especially plausible in applications
where shocks are themselves constructed via regressions on control variables (Romer and
Romer, 2004; Aruoba and Drechsel, 2024). However, the literature has questioned the exo-
geneity of narrative shocks, with Nakamura and Steinsson (2018a) emphasizing their poten-
tial predictability. Others argue that in-sample shock predictability may arise mechanically
due to overfitting. These concerns, originally raised in the context of auxiliary shock regres-
sions (Nakamura and Steinsson, 2018b), extend naturally to LPs with an expansive set of
controls leading to an overly aggressive orthogonal projection matrix Mz in (6). What (8)
offers in this context is a diagnostic tool: by comparing the resulting w; and cy, series, re-
searchers can evaluate how different shock-cleaning strategies reweight the underlying data

in constructing dynamic causal effect estimates.

2.2 w; as a Proximity Weights Series

It seems generally intuitive to estimate the effects of a given policy by assigning greater
weight to realized outcomes of time points (or individuals) that have experienced similar
interventions. In this section, we show that the weights w; estimated by OLS follow this
principle. Beyond its conceptual appeal, this alternative proximity interpretation has the ad-
ditional advantage of relying not on coefficients, but on conditional forecasts that are linear in
y,,- Indeed, revisiting the difference-of-expectations representation in (1) allows us to reinterpret
w; and ¢y, in a way that extends beyond the least-squares framework. While most machine

learning methods lack bona fide coefficients, many still yield predictions that are linear in the
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target, much like OLS.

Specifically, for OLS, we can compute I/RTJS_W(h, J) in two equivalent ways:

IRF; sy (1,0) = 6Py = Py, — Py = (w0’ — w’) vy, ©)

w

where T is a hypothetical new observation, and w® = X&(X'X)~1X’, with X$ = [1 S Z,] €
RX for S € {0,6}, representing the two dosage scenarios. In Goulet Coulombe (2025), OLS
is reframed as a similarity-based estimator, where out-of-sample predictions are expressed
as weighted linear combinations of the training values of the target variable, with weights
interpreted as proximity scores. As shown in (9), local projection estimates can be com-
puted—numerically equivalently—as the difference between two conditional forecasts at
time T for horizon h, given economic conditions Z;.* If the weight vectors w’ and w” each
carry a proximity interpretation, then so should their difference, w.

Building on this intuition and substituting in the OLS solution for “out-of-sample” pre-

dictions, the weight vector w admits the following equivalent representation:
w=X(X'X)71x' - XYx'x)"1x’. (10)

This expression, representing the difference between out-of-sample projection matrices based
on the primal solution to least squares, gains additional interpretive depth through the numer-
ically equivalent dual solution. Although rarely utilized in the standard K < T setting, the

OLS estimator can be equivalently expressed as:
BOLS — (Xlx)—lxlyh — X/(XX/)+yh ,

leveraging the properties of the Moore-Penrose pseudoinverse, denoted by (XX')*. The
generalized inverse satisfies algebraic conditions that guarantee a solution even when the
matrix X has fewer predictors than observations (K < T).

In the context of standard local projections estimated via OLS, this reformulation enables

a proximity-based interpretation of f;,, where:

w= (XX -xVx") x (xx)*
~ ~ ” | S——

Proximity Differential Proximity Denominator

4In linear models, IT{E%y(h, J) is invariant to the context Z., rendering the IRF itself time-invariant. Thus,
we can freely assign values to Z; in linear models, as these contributions are canceled out in (9). However,
retaining Z; anyhow allows for an alternative interpretation of w as a measure of proximity, which becomes
particularly meaningful when conditional expectations are nonlinear and the invariance to Z; no longer holds.
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This highlights that w is the product of two components, both quantifying similarity between
data points. Specifically, X$ X' is a vector stacking inner products (X¢, X;), which measure
the alignment (or proximity) in RX between the hypothetical scenario at time T and each ob-
servation t in the estimation sample. XX’ is the Gram matrix, encoding pairwise proximities
among all observations in the estimation sample within IRX,

While this formula offers no advantage for estimating local projections—being more com-
putationally demanding than standard least squares while yielding identical results—it pro-
vides an insightful interpretation of w. At this point, the question is how should we think of
the effect of (XX’) ", the “Proximity Denominator”.

2.2.1 A Proximity-Based Representation of 3;: the Uncorrelated X; Case

Let us first abstract from the Proximity Denominator and assume that %X 'X = Ip, which also
implies (XX’)* = T. In this case, the primal and dual solutions for OLS collapse to the same

formula:
B = iT i Xe, Xe) = (X0 Xt )| Yern- (11)
t=1
(X$,X¢)— (X9, Xy) . . . . . .
Here, w; = 5T , reflecting the proximity differential between conditions at time ¢

and the projected conditions for a dose of  versus 0. In other words, w; increases if imposing
st = 6 on X¢ brings economic conditions at T (represented as a point in RX) closer to those
of t than when setting s; = 0. We reintroduce the more general dosage parameter J in place
of 1. Since the proximity interpretation extends to machine learning methods, where the
magnitude and sign of § affect impulse response estimates, retaining é—though redundant
in linear models—is preferable.

We can further explore the geometry by rewriting the expression in terms of cosine simi-

larity:

A

1 & 5 5 0 0
Bi=sr 1 Xtz (11312 cos(63,) = [1X2 [ cos(6%,) ) | v (12)

Here, 02, denotes the angle (in degrees) between the vectors X% and X;, so that cos(6%,) =
(X2 %)
X2 11211 Xell2” .
Euclidean norm, that is, the square root of the sum of squared components. From (12), we see

with an analogous definition for 6%,. The notation || - || refers to the standard

that both alignment (through the cosine terms) and vector magnitudes matter. Intuitively, if

s ~ 0, the vector Xﬁ should be closer to X; in RX than Xg. In a linear model with uncorrelated
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predictors, this geometric perspective may appear unnecessarily complex, as the expression
simplifies to (5), where the focus reduces to one-dimensional similarity. Still, it provides a

useful foundation for correlated predictors.

2.2.2 A Proximity-Based Representation of f;,: the Correlated X; Case

Incorporating the “Proximity Denominator” is relatively straightforward, though it makes

the interpretation of proximity differentials slightly more abstract. The primal formulation,
A 1
B =5 [X(x'X)7IX = XUX'X) X |y,

can be rewritten as

T
Bu= 5 12 (B0 B) — (R B e
where (X’'X) “1 = UA1U isthe eigen-decomposition of the precision matrix, F; = X;UA ™2,
and F$ = X¢ UA~2 for S € {0,6}. Here, A is the diagonal matrix of eigenvalues of (X'X) 1,
and U is the matrix of corresponding eigenvectors. These matrices ensure that F; and FS are
orthogonal representations of X; and X2, respectively. Formally, since F'F = Ip holds, we
are effectively brought back, within a new embedding, to the uncorrelated scenario described
in Section 2.2.1. This extends Goulet Coulombe (2025)’s insights on OLS predictions to the
interpretation of OLS coefficients—that is, the primal solution is a dual solution in disguise.

Thus, B, is an estimator that upweights outcomes v, in periods where there is a large
gap between the pairwise proximity scores of evaluation factors FS and economic conditions
at the time of F;, relative to those of F and F;. The factors FS and F? represent two scenarios
that differ solely in their dosage choice in the original space, meaning that multiple entries of
F¢ and F? differ, unlike in the case of uncorrelated X;’s.

Importantly, transforming to F; and F;S entails no loss of information, as the number of
factors equals the number of predictors. The role of the “Proximity Denominator” is thus to
express the same information in a space where summing simple inner products serves as a
proper scoring rule for quantifying proximity. In essence, the matrices (X’X)~! or (XX’')*
can be viewed as pre-processing steps applied to the data X;, allowing the simplified formula

for uncorrelated predictors in (11) to hold.

2.2.3 OLS as a Nearest-Interventions Estimator

First, note that X¢ — X% = [05 00 ... 0 ], which nullifies the other components of the inner

product, regardless of the values of Z;. Returning to the uncorrelated case for illustrative
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purposes, this implies that we can rewrite (11) more compactly as:

e
=

1 T
= = Y (X4 = X0 X = XP) v, (13)

where X! represents any fictitious counterfactual scenario for time ¢, where s; is forced to 0
instead of its observed value. In this formulation, 3, upweights outcomes y; , corresponding
to episodes where the intervention and no-intervention differentials most closely resemble
those being evaluated at time 7. This reveals that w; is effectively a series of proximity scores
between the intended intervention and historical interventions.

In the more realistic case with correlated X;, a similar representation emerges by defining

Fto = 0 as the counterfactual scenario at time #:

s 1 &
ﬁh:52<F3_P21Ft_0>yt+h- (14)
=1

This highlights that w;, obtained through OLS, assigns higher values to periods where the set
of interventions (Z; = 0 — F;) most closely aligns with the intended evaluation (Z; = F? —

F2). This can be represented in two equivalent forms:

T
Z INZell2 e (15)

T
Z IT/It yt+h -

<>1|P—‘

Here, w; corresponds to the inner product proximity scores between Z; and Z;, which are not
scale-invariant and embed information about both vector alignment and magnitudes. The
second representation, based on cosine similarity, explicitly separates these components: w;
is expressed as the product of the scale-invariant alignment in RX (cosine similarity) and the
magnitudes (measured by the [,-norm) of the two interventions being compared. Intuitively,
a large || Z:||2 (e.g., due to a high 8) scales B, linearly upward. A large ||Z;||> indicates that
observation t is particularly informative and carries leverage, being located farther from the
origin 0 in the orthonormal feature space.” In Section 3, we report the two components sep-
arately (cos(6Z,) and |Z;|;) to disentangle the respective roles of alignment and scale in the
baseline monetary policy results.

All in all, this discussion highlights that traditional regression-based estimators are not
so different—at least at a conceptual level—from those explicitly formulated as matching or

similarity-based estimators, as in, e.g., Angrist et al. (2018).

5In the uncorrelated case, | Z: ||, = |d], so the expression simplifies to B, = sign(d) x YL cos(8%) | Z¢|2 Yern-

ECB Working Paper Series No 3105 17



2.3 Machine Learning Models

Local projections are typically framed as the difference between two conditional expecta-
tions. However, their application is almost exclusively linear, and when nonlinearities are
explored, these are often rigidly specified, such as employing two regimes based on a prede-
fined state variable. While such approaches can capture average nonlinear effects (Kolesar
and Plagborg-Mgller, 2024), they may overlook finer nuances in the heterogeneity of treat-
ment effects. These nuances could be crucial for policymakers implementing actual policy
interventions. As emphasized in modern studies focusing on treatment effect heterogeneity
(Athey et al., 2019), causal inference is fundamentally a prediction about the effects of policy.
Hence, nonlinearity and time-variation are not just ornaments, they are about better predict-
ing the effect of one’s actions in varying economic environments.

However, one not-so-minor roadblock is the apparent lack of transparency of fully non-
parametric methods, especially those pertaining to the class of machine learning algorithms.
The good news is that our interpretation tool applies to most ML algorithms the same way
it applies to linear models. Indeed, nonlinearities formulated in the covariate space simply
imply a different notion of proximity, and a different linear combination of y,. Hence, the
anatomies of linear and nonparametric IRFs can be contrasted by comparing their weights

and contributions.

2.3.1 Random Forest Local Projections

Among modern ML techniques, Random Forest (RF) is highly popular because it allows
for complex nonlinearities, handles high-dimensional data, is mostly exempt from overfit-
ting, and requires very little tuning to do so. As such, it has proven effective in predicting
many things, including macroeconomic aggregates (Medeiros et al., 2021; Chen et al., 2019;
Goulet Coulombe et al., 2022). In the context of more structural macroeconomic analysis,
Random Forests and related tree-based ensemble methods have been applied to generalized
time-varying parameters (Goulet Coulombe, 2024a) and to local projection (Mumtaz and Pif-
ter, 2022; Paranhos, 2024). A review of the algorithm can be found in Appendix A.2.

What is particularly relevant for our application is that proximity weights are straight-
forward to recover in Random Forest—which can be seen as an adaptive nearest neighbors
algorithm—and are well-studied in predictive modeling (see Goulet Coulombe et al. 2024
and references therein). The ability to express RF predictions as a convex combination of
y was noted by Lin and Jeon (2006) and involves simple operations on estimation outputs.
While our nonlinear exploration in this paper focuses on Random Forests for simplicity, the
proposed decomposition is also applicable to any machine learning algorithm that gener-
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ates predictions linear in the target variable, such as kernel methods, boosting, and neural
networks, by utilizing tools introduced in Goulet Coulombe et al. (2024).
First, we define the nonparametric local projection as the difference between two RF pro-

jections:
ﬁQ\FS%y(hI 5/ T) = y’\i+h - yA(‘L)’—Q—h’ (16)

for a fictitious new observation 7. Unlike in linear models, I/RT:S_W(h, 9,T) depends on
the context vector Z; and is not necessarily proportional to J, i.e., IT?T:S_W(h, 5,T) = 6 X
I/RT:S_W(h, 1, 7). The resulting impulse response is time-varying, with the sign and size of the
shock influencing the outcome in a non-trivial way. To obtain the average nonlinear effect,
we can average over many Z, with natural candidates for draws being those from the train-
ing sample (Z1.7). This produces a “dataset” of IRFs, allowing us to report summary statistics

such as the mean or explore heterogeneity through clustering analyses.

2.3.2 Retrieving Weights in Random Forest

As evident from the difference of conditional expectations formulation in (9), the weights for
the two predictions can be recovered separately. This allows us to express I/RTJS_W(h, 0,T) =
w+y,(0)y;,, where w,(J) represents the difference between two sets of weights.

Importantly, w.;,(6) depends on the context (indexed by 7), the horizon 4, and the dosage
0. Unlike linear models, which apply the same out-of-sample projection matrix to y, (e.g.,
X4 (X'X)~1X’), the weights in RF are specialized for each horizon. This is because the algo-
rithm performs feature selection and captures nonlinearity independently for each horizon.

The Random Forest prediction for T at horizon & for scenario S € {0,4} is
s 1y s
yAT-‘rh = B Z nh(xr)
b=1
where B is the number of trees in the RF. Each single tree 7, delivers a prediction according

to the following rule:

1 T T
Eh(Xf) = Yernl (E € Pon(XS)) = wlf a
Y I(t € Pyy(X$)) t; < > =

where Py, is the partition implied by the tree and its conditioning information for observation
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I(teth(XTS))
Y I(FEPy(XS)

T, and wb‘sﬁh = ) Then, by reordering sums, we get the desired representation

1 & 1 T1 B
S S S S
Yeon = B Z Ton(Xz) = B Z Z WyrthYt+h = Z B Z Wyrth Yi+h = WYy,
1 1t t b=1
wfth

for intervention scenario S, context indexed by 7, and the horizon h. In words, to generate
wfh in the RF case, one can follow these steps: determine which leaf observation 7 falls into
for a given tree (based on its X?), identify the corresponding in-sample observations for the
leaf and their weights (calculated as 1/leaf size), assign these weights to the relevant in-sample

observations (wys,), and then aggregate these “votes” across all trees in the ensemble.

CONTEXT-SPECIFIC IRF. To obtain the weights for a T-specific RF-based local projection, we

compute
w(8) = wyy, —wy,, (17)

and cumulative contributions can then be calculated and visualized as for linear models.
The notation emphasizes that these weights are more heterogeneous and adaptive compared
to OLS, as the portfolio choice of y;,;,’s depends on the context, the sign and size of the

intervention, and the horizon under study.

UNCONDITIONAL IRFE. To compute weights for average effects across multiple economic

conditions (Zr, T =1,...,T), we rearrange the sums as follows

—

IRFs_y(h,4,7)

=l =

IRFs_, (h,0) =

Ragls

]
—_

e
1=
1~

IS}
Il
—_
~~
Il
—

Wrth (5)yt+h

[
1~
<
_|_
8
h‘
=
=

-~
Il
—_
~
Il
—_

Even the average nonlinear effect can differ from OLS. First, nonlinear algorithms like RF
perform internal feature engineering and variable selection, resulting in effective controls
that may differ from the original inputs. Second, the effect depends on J in a non-trivial way

with potentially disproportional responses. Comparing weights for different choices of é to
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that of OLS makes explicit from where more sophisticated (and less transparent) conditional

mean algorithms derive their estimates.

2.3.3 Summarizing and Understanding Estimated Nonlinearities

As we now know, the nonparametric approach produces an IRF that depends on the input
Z. Exploring this causal effect heterogeneity (or time-variation) is worthwhile, as in this flex-
ible model, the intervention’s impact depends on the sign, size, and the economic conditions
at the time of implementation. To investigate these variations, we can adopt an intermedi-
ate approach between examining all T-specific IRFs and the full-sample average: analyzing
clusters or groups. For a predefined cluster of observations C;, the IRFs can be decomposed
similarly to the average:

IRFs_,y (h,6,T € Cj) = |7 Y IRF,_y(h,0,7) (18)
€C;
1 T
= m Yo Y wen(0)yirn (19)
TeC; t=1
a wrth
=Y Yesn Y C. (20)
= deg, | |
\/_/
wt]h(‘s)

In the empirical section, we apply a simple k-means algorithm to the “IRF dataset”,a T x H
matrix, treating the time dimension as observations and H (horizons) as characteristics. This
allows us to assess whether, for a fixed ¢, there is substantial heterogeneity in policy effects
or if a single homogeneous group dominates. This approach can be viewed as a data-driven
method for defining regimes, contrasting with the manually defined regimes typically used
in local projections (Auerbach and Gorodnichenko, 2012; Ramey and Zubairy, 2018).

2.4 Two Impulse Response Concentration Statistics

To quantify the concentration of IRF estimates, we introduce two summary statistics. The
tirst measures the share of total absolute weights concentrated in the top Q%, indicating how
much the IRF relies on a narrow subset of observations. This statistic primarily reflects the
distribution of purified shocks and how many observations the model interprets as proximate

to the policy intervention. The second applies the same approach to contributions, incorpo-
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rating both the weighting structure and extreme realizations of the dependent variable. Since
IRFs are linear aggregates of contributions, this metric helps diagnose whether concentration
arises from weights, extreme outcomes, or both.

Concentration in distributions can be measured in various ways. We adopt a concentra-
tion ratio that captures the proportion of the total sum of absolute weights contributed by the

top Q% of observations:
Q><T/100J ‘ |

WC(By) = |
q:l whq|

where g indexes absolute weights, ordered from largest (3 = 1) to smallest (§ = T). This ap-
proach parallels well-known measures of income and wealth inequality, offering an intuitive
interpretation—for instance, stating that 50% of ;, is driven by just 5% of observations indi-
cates substantial concentration. For linear models, this measure is independent of the hori-
zon h, as it depends solely on the regressors. However, in machine learning settings, where
predictors and their nonlinear transformations are optimized for each horizon, weighting
structures can vary, making WC horizon-dependent.
The concentration of contributions is defined similarly:

ZLQXT/]OOJ | c ‘
q

R e

where g indexes absolute contributions, ordered from largest (7 = 1) to smallest (7 = T).
Unlike weights, contributions depend on the response variable y;j, making CC inherently
horizon-dependent, regardless of model linearity.

These measures are reported throughout our empirical analysis (see Section 3) and should
be closely monitored by researchers assessing the robustness of IRF estimates.

2.5 Relationship to Other Methods for Assessing Influence

What thought experiment does the c;, path represent, and how does it compare to other

methods evaluating the influence of specific data points on an estimate?

LINK TO INFLUENCE FUNCTIONS. Shutting down specific ¢y, terms and comparing the re-
sulting IRF to the original estimate naturally evokes a connection to influence function anal-
ysis—a key tool from robust statistics (Hampel, 1974; Cook and Weisberg, 1980). The classic
treatment in econometrics is provided by Newey and McFadden (1994). Influence functions
also play a central role in the theoretical analysis of semiparametric estimators (Ichimura and

Newey, 2022) and in causal inference with machine learning models (Chernozhukov et al.,
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2018; Farrell et al., 2020). A popular application is found in Firpo et al. (2009), which uses
specific influence functions of individual observations as targets to estimate unconditional
quantile regressions.

The relationship is formalized as:

Cth = WYt in (22)

= W(Gepn + Veyn) (23)

= WtYppn + Wiliqy, (24)
———’

%IFt

where IF; denotes the influence function of data point ¢. By properties of projection matrices,

we have
T . .
Z wt9f+h = [(X,X)_ X,]{Z,:}Pth = ABh/ and (25)
t=1
T
Y wede = [(X'X) ' X5,y Mxy,, = 0. (26)
t=1

The first term, shown in (25), captures the systematic component—how the shock variable
contributes to each in-sample prediction, given the model’s estimated structure. Under the
purified and standardized shock interpretation of w; from Section 2.1, we obtain

(s)* 5

WiYiihn = } B

Thus, when s; is far from the origin—regardless of sign, given the model’s linearity—it yields
a substantial contribution in the direction of the aggregate effect f,.

The second term corresponds to the thought experiment: “What if this data point had
been different?” In a cross-sectional context with i.i.d. data—thus excluding dynamic features
such as lags of s; and y;—this term is exactly the formula for the influence function of data
point  on f3,. However, with dependent data featuring autocorrelated 7, , ;, and time-stamped
information from t being utilized in multiple roles through a distributed lag structure, the
interpretation becomes murkier.

Therefore, a key challenge in this setting is evaluating the influence of a single observation
(i-e., the [y;1, X;] pair). Several studies have addressed the limitations posed by time series
data, extending influence function methodologies to account for the temporal structure of
information—whether in influencing predictions (Ghosh et al., 2020; Zhang et al., 2024) or
autoregressive parameters (Kunsch, 1984). This is indeed a valuable endeavor, as the usual
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IF; calculations do not directly correspond to the original thought experiment of removing
observation ¢ from the estimation.

However, we consider these concerns peripheral to our main line of investigation for two
reasons. First, we interpret cy, as representing a thought experiment focused on shutting
down interventions. Specifically, turning off a particular ¢y, corresponds to deactivating the
purified shock s; (or s;) at a given point in time. This is a reasonable experiment because pu-
rified shocks are, by construction, uncorrelated. From an influence function perspective, this
approach does not assess the influence of a specific time point or a particular realization of
Yt+n, but rather the influence of each realized intervention. In this sense, it is more conceptu-
ally sound than the alternative view, where s} represents the influence function of the highly
autocorrelated y;,j, on f3,. The key distinction is that it is consistent with the data to momen-
tarily switch on or off a non-serially correlated object—an assumption that does not hold in
the opposite scenario.

Second, our visualization emphasizes cumulative contributions, which significantly
smooth the ¢y, values through an integration-like filtering effect. Consequently, ZL Cypy iN-
herently incorporates substantial neighboring information. Since ¢y, can be fairly noisy due
to the influence of s}, examining raw cy;, values offers limited value. As a compromise, mov-
ing average filters could be applied, effectively incorporating neighboring data points and
enhancing the interpretability of c;;,, and we report one such example for monetary policy

shocks in the appendix.

LINK TO LEVERAGE. Davidson and MacKinnon (2004) provide an extensive geometric treat-
ment of leverage and influence in a regression context, emphasizing that, by construction,
regression coefficients are weighted averages of the target variable. The relationship between

the contribution term ¢y, and classical leverage statistics is

Cop = Wiprn + Wil (27)
H/—/
—(1-Hj;) LOOL,

where LOOI,; represents the leave-one-out influence of data point ¢, and Hy; is the ¢-th diag-
onal element of the hat matrix (i.e., the leverage of observation f). The term (1 — Hy) serves
as a deflator that adjusts for the fact that observations with high leverage exert greater control
over their own fitted values, thereby reducing their residual variance.

The term (1 — Hy) enters this formulation because, unlike the classical influ-
ence function—which measures the sensitivity of parameter estimates to infinitesimal
perturbations—the discrete influence function captures the finite effect of specific observa-

tions on the estimator. In classical influence analysis, the infinitesimal nature of the perturba-
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tion implicitly accounts for leverage effects through linear approximation, obviating the need
for an explicit (1 — Hy) adjustment. However, unlike influence functions, which mechani-
cally sum to 0, and our cumulative c;;, series, which converges to [3;1, LOOI; do not sum to 0.
Therefore, they are less appealing for our objective of decomposing .

Lastly, it is important to note that the direct connection to influence functions and lever-
age statistics holds primarily in linear models. For various machine learning models, such
as Random Forests, which we will employ in our empirical section, no closed-form influ-
ence function exists. This is due, in part, to the absence of a well-defined gradient—since
Random Forests rely on a greedy algorithm—and the fact that in-sample residuals are mis-
leading due to the well-documented benign overfitting phenomenon (Belkin et al., 2019;
Goulet Coulombe, 2024b).

LINK TO EXPANDING- AND ROLLING-WINDOW SCHEMES. The formulations below com-
pare cumulative contributions with the coefficients estimated from expanding window (EW)
and rolling window regressions with window size w (RW). Each of these quantities provides
distinct insights into how different periods drive estimation results:

T

Crp = Z (xX'X)"'X] {2, t}Yt+h (Cumulative Contributions)
t=1
T

?}7 - Z[( {1:T,: }X{lzT,:})71X/]{2,t}yt+hr (Expanding Window)
t=1

T

1;\’/1\/ = 2 [(Xf{(t_w);t,;}X{(t—w):t,:})71X/]{2,t}]/t+h' (Rolling Window)

t=T—w

The closest conceptual parallel is between cumulative contributions (Cs;,) and expanding
window estimates (BEW Both generate sequences that eventually converge to the full-

EW’s eventually lands on ;. These

sample coefficient. Indeed, the cumulative sum of A
differences, however, stem from a series of different models rather than a single consistent
specification. Therefore, they cannot be interpreted as the product of a coherent set of weights
(seen either as a purified shock or proximity scores) and the target.

Mathematically, the distinction between these approaches lies in how the covariance ma-
trix is handled. The cumulative contribution approach pre-multiplies X’ by a precision matrix
(X’X)~! estimated from the full sample. That is, it learns the multivariate distribution of
X using the entire dataset. This allows contributions to be accumulated based on a single
consistent proximity structure rather than an ever-changing one that depends only on the
information available at time T. Additionally, cumulative contributions tend to be more sta-

ble, particularly in the earlier parts of the sample, where expanding windows use a possibly
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unreliable precision matrix (X {{1:T, A X, :})’1 due to limited sample size.

The one-sided rolling window estimator BI%XV does not produce a sequence that converges
to a final coefficient using the full sample. Still, like many time-varying parameter methods
(such as those employing random walks), it conveys information into how different periods
influence the estimated coefficients. This is directly relevant to our analysis, as periods with
significantly different 3%‘[ will exert influence on B, attracting it in their direction. How-
ever, achieving an assessment that is both highly localized (as ¢y, is) and accurate presents
a challenge due to the inherent bias-variance trade-off in time-varying parameter models.
More often than not, acceptable variance levels come at the cost of overly smooth estimates,
which ultimately reduce the degree of localization (Goulet Coulombe, 2020, 2024a).

In summary, the cumulative contribution approach differs fundamentally from both ex-
panding and rolling window methods. Its attached weights are derived from a single consis-

tent model and may be more efficient in handling the covariance structure of X;.

3 Empirical Applications

We consider four applications in this section to demonstrate the usefulness of visualizing
contributions and weights within our proposed framework. The first examines the effects
of monetary policy shocks on the economy, with a particular focus on inflation, a variable
often associated with puzzles in the literature. The second focuses on fiscal policy, analyzing
its impact through estimates that, while consequential, exhibit considerable variation across
studies. The third explores the effect of global temperature shocks on world GDP, a ques-
tion which has naturally received a lot of attention lately. Finally, the fourth investigates the
impact of financial shocks on the economy, emphasizing how incorporating nonlinearities in
the conditional mean can alter results compared to linear specifications.

We present results through cumulative contributions and weights. As previously dis-
cussed, by construction, for a given horizon, we have ﬁh = ZL ¢y, when T reaches T, the
full length of the estimation sample. We refer to the resulting time series as the evidence
curve of ;. Weights are reported either in their raw form or smoothed using a 6-month
moving average, which helps highlight specific events. While smoothing may seem unex-
pected for series typically considered white noise, it is important to note that when y;, is
particularly smooth—as with cumulative IRFs at longer horizons—a sequence of small, con-
secutive shocks of the same sign can exert an influence comparable to that of a single large

shock. A moving average filter can elicit such pockets of instrument relevance.
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3.1 Monetary Policy

We decompose the response of the economy to monetary policy shocks, focusing on the price
level and unemployment, which are central to the Fed’s dual mandate. We compare two
shock series with estimates dating back to at least 1970: the Romer and Romer (2004, hence-
forth R&R) monetary policy shocks and Cholesky-identified shocks from a VAR. The latter is
well-known for frequently producing the so-called price puzzle, where monetary tightening
counterintuitively leads to higher inflation. Using our framework, we investigate the under-
lying reasons for this puzzle (or its absence) and assess whether our explanation aligns with
existing interpretations in the literature.

The main specification includes inflation, unemployment, industrial production, federal
funds rate, S&P500 stock market index, and the respective shock series. The latter is obtained
from i) R&R and ii) a Cholesky VAR estimated with the listed variables (excluding the shock)
in the same order. Data is taken from FRED-MD (McCracken and Ng, 2016), with all variables
including 12 lags. We report cumulative IRFs throughout, including 84% confidence bands.
To account for serial correlation in the error term, we apply the Newey-West correction to the
standard errors (Newey and West, 1987).°

GENERAL OBSERVATIONS. In Figure 1, we observe that both the Cholesky VAR and R&R
shocks produce broadly similar impulse response functions for unemployment. The evidence
supporting the responses 24 months after the shock is concentrated between 1970 and the
mid-1980s. Within this 15-year span, the evidence is relatively evenly distributed, indicating
that the IRFs are not driven by any single event.

In Figure 1, the Cholesky VAR and R&R shocks yield markedly different impulse response
functions for inflation, with the heart of the disagreement centered on the interpretation of
the 1970s. The Cholesky VAR shocks appear to conflate the dynamics of stagflation, attribut-
ing episodes of both high unemployment and high inflation to monetary policy. As shown
in Figure 2, the Cholesky VAR assigns a series of weights (w;) in tightening territory during
both the first and second inflation spirals of the 1970s. While there are sporadic mild nega-
tive contributions from 1976 to 1978, these are largely offset by the strong attribution of the
inflation spirals to monetary tightening.

In contrast, the R&R shocks exhibit a clear sequence of consistently negative weights pre-
ceding the second inflation spiral, as seen in Figure 2. Although R&R shocks also reflect some

counterintuitive evidence for the 1974-1975 period, this is substantially counterbalanced by

®1f a less passive approach to heteroskedasticity—such as stochastic volatility or generalized least squares
(GLS)—were used, the contributions and weights would adjust accordingly. This raises an intriguing possibility:
although feasible GLS is often set aside in favor of OLS with corrected inference, visualizing the implied data
weighting may help users better understand and accept differences in point estimates.
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Figure 1: Responses to Contractionary Monetary Policy Shocks
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Notes: The plot shows responses of US inflation and unemployment to a one standard deviation contractionary monetary policy shock. The left panels are
identified via a 4-variable VAR with short run restrictions. The estimation sample starts in 1970M3 and ends in 2019M9, marked by the vertical dashed line.
The right panels use instrumental variable identification with the instrument from Romer and Romer (2004) with the sample starting in 1970M3 and ending in
2004M1. Solid colored lines present cumulative contributions Zthl ¢y, summing to the final predicted value shown as dots. Full impulse response functions
are shown in black with Newey-West 84% confidence bands. Lavender shading corresponds to NBER recessions.

the prolonged stretch of monetary loosening (purified) shocks from 1976 to 1978, occurring
48 to 60 months before inflation peaks at its post-war summit. This period of monetary ex-
pansion marks the final years of the Burns era and the start of G. William Miller’s tenure as
Federal Reserve chairman, who was known for his dovish stance against inflation (Romer
and Romer, 2004). These latter contributions completely offset the various temporal regions
where evidence pushes in the direction of a puzzle. Finally, it is also worth noting that these
"correct” results seem to be based almost entirely on evidence from loosening of shocks. We
will investigate this claim further within our nonlinear specification, which can accommodate
this and other subtleties absent from linear models.

As emphasized by (15) and the more basic form in (12), the weights—under their
proximity-based interpretation—can be split into two components: the scale-invariant prox-
imity term, captured by vector alignment through cos(6%,), and the magnitude of the encoded
economic conditions at time ¢, denoted by F;. We report both quantities separately in Figure
14. The smoothed sequence of the cosine term sharpens the delineation of monetary pol-

icy regimes, revealing periods of exogenous expansion or contraction with greater clarity. A
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Figure 2: Proximity Scores for Monetary Policy Shocks
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Notes: The plot displays proximity scores between the intended policy intervention and past interventions. Smoothed weights are averaged over six months.
The left panel is estimated with a 4-variable VAR with short run restrictions. The estimation sample starts in 1970M3 and ends in 2019M9. The right panel use
instrumental variable identification with the instrument from Romer and Romer (2004) with the sample starting in 1970M3 and ending in 2004M1. Lavender
shading corresponds to NBER recessions.

striking example is the prolonged expansionary stance of the mid-1970s, which emerges dis-
tinctly in the R&R specification but is notably absent under the Cholesky VAR. This suggests
that, when seeking historical interventions analogous to recent monetary loosening, the R&R
shocks anchor strongly to the mid-1970s, whereas the Cholesky-based view does not. As for
the norm term, ||F;||p, it remains relatively stable across the sample. Still, two episodes re-
ceive systematically elevated weights—sometimes nearly double—regardless of directional
alignment: the 1973-1975 recession and the early 1980s twin recessions. This reflects the inten-
sity of economic conditions during those periods, which leads to higher weights regardless

of directional alignment.

ADDRESSING PUZZLES. Both Balke et al. (1994) and Hanson (2004) find evidence suggest-
ing that the price puzzle, when identified using a recursive Cholesky ordering, is associated
primarily with the 1959-1979 sample period. The evidence curves in Figure 1 concur, and
provide a why. Those closely track inflation and interest rate movements in the 1970s, sug-
gesting that peak contributions are likely driven by reverse causality and omitted variables,
particularly those related to inflation expectations. Incorporating additional information into
the local projection using VAR-identified shocks could correct the “faulty” attribution of the
two inflationary spirals of the 1970s to monetary tightening. Ultimately, such an adjustment
could yield an IRF with the correct sign.

In Figure 3 and 12 (Appendix), we evaluate two approaches: (1) enriching the local pro-
jection with a medium-sized VAR information set, and (2) directly proxying for inflation ex-

pectations.” Accounting for inflation expectations, incorporating forward-looking variables,

"The medium-sized VAR includes 21 variables with 18 lags, covering various sectors of the economy (FRED-
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or including additional variables to address omitted variable bias are established solutions
to the price puzzle, as discussed in Christiano et al. (1996, 1999), Bernanke et al. (2005), and
Brissimis and Magginas (2006).

We find that the former is sufficient to “correct” the IRF, while the latter is not. For the
“Medium-sized VAR” information set case, the now-correctly signed IRF closely resembles
that of the R&R shocks and highlights the same dominant negative contributors—namely,
the sequence of monetary loosening shocks from 1976 to 1978. However, the period leading
up to the 1980 recession continues to exert a strong contribution in the opposite direction,
dampening the overall magnitude of the estimated response.

In the case of the expectations proxies, the second cluster of counterintuitively signed
contributions is nullified; however, the first cluster persists, continuing to push the IRF up-
ward. Combined with the weak contributions from loosening shocks in 1977, this adjust-
ment proves insufficient to tilt the IRF into negative territory. This aligns with the findings
of Hanson (2004)—where many forward-looking variables are considered and do not prove
sufficient to correct for the price puzzle, especially for the period before the 1980s.

Regardless of the specific econometric specification, an important pattern emerges. A
correctly signed and significant IRF of the effect of monetary policy shocks on inflation, us-
ing data extending back to the 1970s, consistently requires weights that capture the clear
sequence of loosening shocks from 1976 to 1978. Without these, neither the augmented VAR
specifications nor the simpler R&R shock-based models yield intuitive IRFs.

Figure 13 (Appendix) illustrates an alternative perspective on contributions. Rather than
evaluating evidence curves through the cumulative contributions of training observations,
this approach uses moving averages of contributions, introducing less smoothing. The most
influential contributions originate from the 1970s and 1980s. While the Cholesky VAR fails
to capture the negative contributions of the mid-1970s loosening shocks, both the R&R spec-
ification and the medium-sized VAR clearly identify them. These negative contributions are
substantial enough to offset other influences from the same period that exhibit counterintu-
itive signs.

NONLINEAR ENLIGHTENMENT. We complete the analysis with our nonlinear IRFs for R&R
shocks (see Figure 4). The nonlinear model is a Random Forest, following the methodology
outlined in Section 2.3, with implementation details provided in Appendix A.2.

We address two questions: First, is there any evidence of effects from tightening shocks

MD mnemonics: RPI, DPCERA3MO086SBEA, INDPRO, CE160V, CUMENS, UNRATE, PAYEMS, HOUST,
S.P.500, FEDFUNDS, T10YFFM, AAAFFM, BAAFFM, WPSFD49207, WPSID62, OILPRICEx, CPIAUCSL, CPI-
ULFSL, PCEPI, CES0600000008, M2SL). For the specification with inflation expectations, we include the median
expected price change during the next 12 months from the Michigan Survey of consumers and the median
forecast for the following quarter and the current year from the Survey of Professional Forecasters.
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Figure 3: Price Puzzle Resolutions for Monetary Policy Shocks
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Notes: The plot shows responses of US inflation and unemployment to a one standard deviation contractionary monetary policy shock. The left panels are iden-
tified via a medium-sized VAR with short run restrictions. The right panels use inflation expectations in addition to the 4-variable VAR identified via short run
restrictions. In both cases, the estimation sample starts in 1970M3 and ends in 2019M9, marked by the vertical dashed line. Solid colored lines present cumu-
lative contributions Y/ ¢;;,, summing to the final predicted value shown as dots. Full impulse response functions are shown in black with Newey-West 84%
confidence bands. Lavender shading corresponds to NBER recessions.

in an R&R shock-based local projection? Second, does the early hump observed with R&R
shocks persist in a nonlinear model where shock size and sign matter? The answer to the
first question is negative—IRFs from R&R tightening shocks are effectively null. R&R ac-
knowledge in their original paper that much of the exogenous variation in interest rates
is attributable to political influence—and that the pressure is almost always unidirectional.
Therefore, it is natural to ask whether there is any quantitative evidence from R&R we should
use to forecast the effects of future monetary tightening decisions.

The answer to the second question is positive—separating positive and negative shocks
yields more intuitive IRFs for positive shocks: flat for nearly two years before rising to align
with the linear IRF (in turquoise in Figure 4). Comparing weights across horizons high-
lights the key events driving these patterns. The first substantial weight stems from Nixon's
pressure on Arthur Burns to loosen monetary policy ahead of the 1972 election (Drechsel,
2024), accounting for over half of the IRF at horizon & = 48. Thus, when tasked with iden-
tifying an event resembling an exogenous, unsystematic policy intervention, the framework

points to the economically unjustified monetary easing of late 1971 and early 1972. The IRF at
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Figure 4: Nonlinear Responses of Inflation to Monetary Policy Shocks
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Notes: The plot shows responses of US inflation to a one standard deviation for a expansionary (sign flipped) and contractionary monetary policy shock. The
shock is identified via the Romer and Romer (2004) instrumental variable. The left panels present cumulative contributions 2ij] ¢y, in solid colored lines, sum-
ming to the final predicted value shown as dots. Full impulse response functions are shown in black, defined by the mean and the 16" and 84" percentile of the
tree distribution (see Section A.2). Right panels show the corresponding weights (wy;,) over time in 6-month moving averages. Lavender shading corresponds
to NBER recessions.

h = 60 rises further due to the sequence of loosening shocks from 1976-1978, also prominent
in the linear model (see Figure 15 in the appendix for a comparison of linear and nonlinear
weights.). In both cases, R&R shocks capture evidence primarily from expansionary episodes
driven by political pressure on the Fed during the 1970s.

While this concentration supports the instrument’s validity—reflecting genuine exoge-
nous shocks to an otherwise systematic policy—it raises concerns about the external validity
of the estimates, particularly when applied to forecast the effects of contractionary monetary
policy nearly 50 years later. Specifically, it is unclear whether the observed delays and mag-
nitudes in the IRF are representative of the current economic environment. Post-pandemic
evidence suggests that inflation has not responded to monetary tightening faster than with
a two-year lag, casting doubt on the relevance of 1970s dynamics for contemporary policy

analysis.

FURTHER NONLINEARITIES. Finally, we dig out additional nonlinearities by clustering the
IRFs as described in Section 2.3. In Figure 16 (Appendix), we report two clusters for each

shock sign.
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For expansionary monetary policy shocks, the first cluster corresponds in great part to
the episode of Nixon pressuring Arthur Burns and covers 57% of observations. This cluster
yields an IRF closely resembling the one obtained from the full nonlinear model. The sec-
ond cluster, grouping the remaining 43% of observations, appears to be primarily driven by
the prolonged sequence of monetary loosening shocks from 1976 to 1978. While the overall
shape of the IRF is similar to that of the first cluster, the magnitude is notably smaller and
the inflation response is more sluggish, taking 36 months to become apparent. This suggests
a potential difference in the economic response between a large, discrete shock and a series
of smaller, gradual shocks. Overall, the clustering analysis highlights the significance of po-
litically motivated shocks, which are grouped within one cluster, and episodes of sustained
monetary loosening, clustered separately.

For contractionary shocks, the clustering analysis confirms that the evidence is relatively
weak. The dominant cluster, supported by 95% of the data, shows an insignificant IRF con-
sistent with the full-sample estimate (Cluster 1 in Figure 16). However, a very small cluster,
based on a limited number of data points from the late 1980s, exhibits an IRF featuring a price
puzzle. While this result is derived from a narrow subset of observations (5% of the sample),
it is nonetheless notable that, in a general nonlinear model, any strong evidence stemming

from contractionary R&R shocks appears to point in the wrong direction.

3.2 Government Spending

Building on the work of Auerbach and Gorodnichenko (2012, 2013), and Ramey and Zubairy
(2018), a substantial literature has explored the heterogeneous effects of fiscal policy, par-
ticularly focusing on how fiscal multipliers vary with the state of the economy. A central
challenge in this literature is identifying an exogenous fiscal policy impulse, as it is more
often than not endogenously shaped by prevailing economic conditions. Ramey (2011) and
Ramey and Zubairy (2018, henceforth RZ) championed the use of military spending shocks
as a solution, arguing that such shocks are driven by causes largely exogenous to the US
economy and government spending decisions.

As in many macroeconomic studies of this type, truly exogenous impulses are rare, lim-
iting the number of effective data points. While the weak IV literature addresses inferential
challenges in such settings, we ask the related question: How many historical experiments
contribute to this estimate? The sparse case is particularly consequential for both inference
and external validity.

As it turns out, for fiscal policy effects identified via government spending shocks, the

answer could hardly by clearer in Figure 5. First, considering the causal effect during times
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Figure 5: Responses of Real GDP to Government Spending Shock
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Notes: The plot shows cumulated responses of real GDP to a government spending shock as defined in Ramey and Zubairy (2018) in periods of high versus
low unemployment (above/below 6.5%). Data are transformed to stationarity. The estimation sample starts in 1891Q1 and ends in 2010Q4. Cumulative contri-
butions Y, ¢y, are presented in solid colored lines, summing to the final predicted value shown as dots. Full impulse response functions are shown in black
with 95% confidence bands applying Newey-West standard errors. Lavender shading corresponds to WWI, WWII, Korean war, Vietnam war, and Gulf war.

of slack—defined by the unemployment rate exceeding 6.5%—the estimate is derived almost
entirely from a single event: World War II. This is also reflected in concentration statistics
(Table 2 in the appendix), where contributions reach a 90% concentration level for all three
horizons. Second, the low-unemployment 3, is a composite of the late WWII period (when
unemployment was declining) and the Korean War. Again, concentration measures for con-
tributions amount to 81% for the shorter horizons and 77% for h = 15.

Figure 17 (Appendix) shows raw shocks and weights, either as such or smoothed using
a 4-quarter moving average. While raw shocks indicate heightened military shocks volatil-
ity around the onset of WWII, the period’s significance is far more evident in the weights,
particularly in the smoothed version for the high-unemployment regime. There, we observe
a distinct window of instrument relevance opening around 1940Q2 and closing in 194204,

while the rest of the sample remains mostly flat at zero.

ADVERSARIAL ROBUSTNESS CHECKS. In Figure 6, we perform two robustness checks.
First, we re-estimate the IRFs for both regimes after trimming the top and bottom 1% of
weights, in the spirit of a trimmed-mean estimator.® The results are striking: neither regime’s
IRF survives this test, as both collapse to nearly zero. Concentrations of weights collapse to
36% and 49% in the high- and low-unemployment regimes, respectively, and the correspond-
ing measures for contributions show values around 55% for the former and near 70% for the

latter (see Table 2 in the Appendix). Second, we re-estimate the models using data from 1960

8Since the usual IRFs are effectively weighted averages of T X cy;,, another natural robustness-enhancing
alternative is the trimmed-mean estimator based on contributions rather weights. We get even more negative
results from this alternative.
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Figure 6: Responses of Real GDP to Government Spending Shocks for Different Subsamples
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Notes: The plot shows responses of real GDP growth to a government spending shock, as identified in Ramey and Zubairy (2018), for three different estima-
tion samples. Post-1960 IRF results from estimating the model starting in 1960Q1 and ending in 2010Q4. For Trimmed IRF, we set weights at the 1st and 99th
percentiles to zero for each horizon, and then re-cumulate the remaining contributions to obtain the IRE. Original IRF refers to results obtained using the full
sample, as done in the main analysis (Figure 5). For the evidence curves we focus on the peak horizon of the original IRF. Cumulative contributions Zthl ¢y, are
presented in solid colored lines, summing to the final predicted value shown as dots. Full impulse response functions are shown in black with 95% confidence
bands applying Newey-West standard errors. Lavender shading corresponds to WWI, WWII, Korean war, Vietnam war, and Gulf war.

onward, excluding all previously identified key contributors. This not only removes early in-
fluential episodes but also allows the model to reconstruct its embedding (via F;), potentially
bringing other episodes to shine. However, no such emergence occurs—both post-1960 IRFs
exhibit either erratic shapes, incorrect signs, or both.

How should we interpret results with this degree of sparsity? While they clearly iden-
tify the historical precedents driving the estimates, they also raise concerns about external
validity. The empirical recession regime estimates derived from military spending shocks,
despite spanning over a century of data, can largely be reduced to a before-and-after analysis
of WWIl-era government spending. Can we confidently predict the effects of fiscal stimulus
in the next US recession based on a single, highly unique event from more than 80 years ago?
Such sparsity enhances transparency and interpretability, but comes with risky extrapolation
for future policy analysis.

This paper is not the first to put dents in the armor of military spending shocks. Kolesar
and Plagborg-Moller (2024) highlight that relying solely on military buildups, without corre-
sponding retrenchments, introduces asymmetries that complicate interpretation. This aligns
with Barnichon and Mesters (2025), who emphasize the low power of the instrument as a
key efficiency concern, leading to wide and potentially uninformative confidence intervals or

estimates that are highly sensitive to specification choices.

SPECIFICATION CHOICES: GROWTH RATES VS. RATIOS. In Figures 18 and 19 (Appendix),
we present results based on ratio-based estimates, following exactly the regression design in
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RZ. However, the stationarity of these ratios remains uncertain. Moreover, the impact on j;,
of choosing stationarized data (e.g., growth rates) over levels is not always straightforward
in applied settings. Weights and cumulative contributions help illustrate how the use of
potentially non-stationary data influences the estimated coefficients.

Whether the analysis uses levels/ratios or first differences, the estimates are strongly in-
fluenced by a narrow set of historical events from the distant past. In the recession regime,
WWII is the sole significant positive contributor, while the overall trending behavior nega-
tively affects contributions across the 100-year sample. Figure 19 (Appendix) also reveals an-
other, albeit more modest, period of instrument relevance just before WWIIL. However, since
these negative weights coincide with strong growth in the following years, they ultimately
contribute to shrinking the size of the fiscal multiplier in the recession regime.

A similar pattern emerges in the expansion regime, where the Korean War drives the esti-
mates, while downward trends reduce contributions from approximately 0.5 in the 1950s to
below 0.2. This decline primarily reflects the combination of mostly positive military spend-
ing shocks with a multi-decadal deceleration in GDP growth from 1950 to the early 2000s. It
is rather unclear whether this association is desirable.

Consequently, the IRF using stationary data in Figure 5 peaks about 0.2 higher at h = 15in
the recession case than when using the partly trending ratio data. A similar but more moder-
ate shrinkage also occurs in the expansion case. Therefore, we see that gazing at cumulative
contributions and weights can not only be helpful at understanding the role of the exogenous
variable of interest, but also the non-trivial effects of the design of the regression into which

it is included.

OTHER F1sCcAL PoLICY EFFECTS ESTIMATES. Figures 20 and 21 (Appendix) present cu-
mulative contributions and weights for alternative specifications of government spending
shocks on real economic activity. Specifically, we focus on the Ben Zeev and Pappa (2017,
henceforth BZP) and Ramey (2011) specifications. The former identifies fiscal shocks by defin-
ing exogenous defense spending shocks as those orthogonal to current defense spending,
while also best capturing the trajectory of defense spending shocks over a five-year hori-
zon. The latter differs slightly from the specification used earlier, as it does not distinguish
between high- and low-unemployment regimes and focuses on a later sample, starting in
1947—much later than RZ.

In Figure 20 (Appendix), we see that both shocks yield relatively similar estimates for
h = 5, with B5 heavily influenced by the Korean War, accounting for more than half of the
reported value in both cases. However, results diverge at h = 9 and h = 12, where BZP

produces more moderate estimates compared to i = 5, while the IRF from Ramey (2011)

ECB Working Paper Series No 3105 36



remains elevated and even increases further. This discrepancy arises partly from how the
years immediately preceding the Korean War contribute to later horizons. For Ramey (2011),
these years contribute in the same direction as earlier horizons, whereas for BZP, they push
the IRF toward zero. There is some indication that these estimates might remain viable even
without their most influential historical contribution, as the curves steadily climb in the ex-
pected direction from the 1950s onward. Additionally, concentration measures suggest that
the distribution of weights as well as concentrations are more dispersed (with a WC([%h) of
40% and CC(Bh) ranging from 0.52 and 0.58 across different horizons).

Figure 22 (Appendix) presents the trimmed and post-1960 estimates for the Ramey (2011)
and BZP specifications. Both fail the post-1960 test, as their IRFs take the wrong sign. The
trimming test, however, is less severe. The Ramey (2011) specification still produces a positive
impulse response with a shape similar to the original, despite the Korean War being visibly
trimmed out. This resilience is driven by numerous small shocks that continue to contribute
in the expected direction. In contrast, the BZP IRF, which was already weaker in statistical
significance than Ramey (2011) in its original form, turns negative more quickly and appears
broadly insignificant.

Barnichon et al. (2022) and BZ build on RZ by using military spending shocks to iden-
tify fiscal policy effects, specifically examining asymmetries between spending increases and
decreases. Despite differing identification strategies, both rely on military spending as the
primary instrument for exogenous variation. Their mixed findings—Barnichon et al. (2022)
detects asymmetries, while Zeev et al. (2023) does not—align with our results, suggesting
that fiscal multipliers identified through military shocks are fragile due to their reliance on a
highly limited set of events. Further narrowing the analysis to detect heterogeneity amplifies

this concentration issue.

3.3 Global Temperature Shocks

In an influential recent paper, Bilal and Kénzig (2024, henceforth BK) employ local projec-
tions to analyze the dynamic causal impact of global temperature shocks on world GDP,
starting from 1960. Their findings suggest that a 1°C increase in global temperature results
in a gradual decline in world GDP, peaking at a 12% reduction after six years. This effect is
statistically significant at the 5% level for the period spanning years 3 through 7. Further-
more, the temperature shocks exhibit a persistent effect on global temperature levels, which
remain elevated by more than 0.5°C several years after the initial shock. Even a decade later,
GDP does not fully revert to its pre-shock trajectory, implying a degree of lasting economic

damage.
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Figure 7: Responses to Global Temperature Shocks
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Notes: The plot shows responses of world real GDP (left panel) and global average temperature (right panel) to a global temperature shock as identified by Bilal
and Kénzig (2024). The estimation sample starts in 1963 and ends in 2019, in yearly frequency. Cumulative contributions Y_7_; c;;, are presented in solid colored
lines, summing to the final predicted value shown as dots. Full impulse response functions are shown in black with 90% confidence bands applying Newey-
West standard errors. Lavender shading corresponds to NBER recessions.

We reassess the robustness of the claim using our new set of tools. Given the limited num-
ber of data points—annual data from 1960 to 2019, yielding between 48 and 58 observations
depending on the forecast horizon with the specification incorporating two lags—it should
be relatively straightforward to identify which pairs of years and shocks are driving the show.

Results are presented in Figures 7 and 8, which display cumulative contributions and
the corresponding weights alongside the values of the response variable, respectively. By
examining the evidence curves derived from the key impulse response function for world
GDP, we observe the clear influence of two significant climatological events on the estimated
effects. These events are the 1964 cooling shock, the late-1990s El Nifio, and the subsequent La
Nifia event. Despite these observations, the overall concentration levels are more moderate
than in previous applications, with WC(B;,) = 0.25 and CC(f;,) ranging from 0.27 (h = 3) to
0.33 (h = 10). Therefore, some more investigation is needed.

The evidence curve for the response of global temperature to a global temperature shock
shows broad support from the data, with trajectories generally trending upward, resembling
random walks with drift. This pattern indicates strong evidence that the effect of a tempera-
ture shock on global temperature at time ¢ is partially offset—by approximately 50%—Dby the

end of the following year, with the cumulative effect stabilizing in subsequent years.

ERUPTION OF MOUNT AGUNG AND THE POST-WAR ECONOMIC BOOM. The massive cool-
ing shock of 1964 resulted from the eruption of Mount Agung in Indonesia in 1963. This vol-
canic eruption released large quantities of sulfur dioxide (50,) into the stratosphere, forming

a reflective aerosol layer that reduced solar radiation and caused a “volcanic winter.” This
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Figure 8: Proximity Scores and Realizations of y; for Global Temperature Shock
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shock coincides with a significant period of post-war economic growth for the following 10
years, which happens to be the largest in the sample for both the 6-years and 10-years mov-
ing average (see Figure 8). The post-war boom is well-documented as a time of substantial
global GDP growth, which slowed markedly in the mid-1970s due to the oil price shocks and
geopolitical turmoil, such as the Iranian Revolution.

This pairing of a negative cooling shock with a decade of extraordinary growth, clearly
visible at the beginning of Figure 8, significantly affects the estimated long-run impacts of
climate shocks on world GDP. We see in Figure 7 that the early contribution of the 1964
shock is by far the most important contributor to the large negative effects, after 3, 6, and
10 years. Still, there is reason to believe that world GDP’s rapid growth—driven by post-war
reconstruction, productivity gains, booming trade, and global investment under the Bretton

Woods system, with stable energy prices sustaining growth—may be unaccounted for.

EL NINO AND LA NINA EVENTS OF THE LATE 1990S, AND THE CHINA/INDIA BOOM. The
late-1990s El Nifio event represents another pivotal climatological shock, marked by a signif-
icant global temperature increase. The 1997-1998 El Nifio is one of the strongest on record,
characterized by warming of the Pacific Ocean and disrupted weather patterns worldwide.
In terms of IRF analysis, this event is paired with elevated economic growth in the mid-2000s,
right before the Great Financial Crisis (GFC). We see well the synchronization of such events
in Figure 8. This pairing leads to an upward temperature shock coinciding with a period of
economic expansion, which shatters the longer-horizon IRF estimates due to the contrarian
relationship between temperature shocks and economic conditions.

Following this, the late-1990s La Nifia event—a period marked by cooler-than-average
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ocean temperatures in the equatorial Pacific—had the opposite climatological effect. La Nifia
tends to generate extreme weather events, including droughts and floods, which have varied
economic impacts. Interestingly, this event coincided with an era of steady economic growth
in many regions. The evidence curve reveals that this period of cooler temperatures mitigated
some of the “counterintuive” effects of the El Nifio event, as colder temperatures are now
paired with sustained expansion.

A key question is whether these climatological events played a role, to some extent, in the
sparkling global economic growth of the early 2000s, as there is no shortage of alternative
explanations. The early 2000s were characterized by significant global GDP growth due to
the rapid economic expansion of emerging markets, particularly China and India. China’s
accession to the World Trade Organization (WTO) in 2001 catalyzed global trade, while the
rise of the information technology sector contributed to productivity gains worldwide. Ad-
ditionally, the global commodity boom fueled by growing demand in emerging economies
supported higher income levels in resource-exporting countries, contributing to a synchro-

nized global expansion.

ADVERSARIAL ROBUSTNESS CHECKS. The information gathered from Figures 7 and 8 sug-

gests four robustness checks on BK’s original specification (see Figure 9).

1. Excluding the 1964 Cooling Shock. The first robustness check examines the exclusion of
the 1964 cooling shock by estimating from 1985 onward. Removing this shock reveals
that the IRF remains robust for early and mid-range horizons (4 to 8 years), but the
long-run effects (8 to 10 years) collapse to zero. This suggests that conclusions about
persistent economic effects of climate shocks are heavily reliant on the inclusion of this

singular event, making the long-run impacts fragile.

BK also performs a similar robustness check by excluding all volcanic eruptions, recog-
nizing that temperature shocks from such events may have different implications than
those from other sources. Their results also indicate that this modification attenuates the
long-run effects. However, the eruption of Mount Agung stands out as the most influ-
ential, as it coincides with a period of exceptionally strong post-war economic growth.
Consequently, the robustness check conducted here is inherently more adversarial to
the baseline results than the one in BK.

2. Excluding the El Nifio and La Nifia Events. The second robustness check focuses on the
exclusion of the late-1990s El Nifio and subsequent La Nifia events. While one might
expect these significant climatological events to influence the results substantially, their

opposing dynamics largely cancel each other out in the IRF analysis. The 1997-1998
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Figure 9: Effects of Global Temperature Shocks on World GDP for Different Subsamples
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Notes: The plot shows responses of world real GDP to a global temperature shock, as identified in Bilal and Kénzig (2024), for four different estimation samples.
Cumulative contributions Y./, cy, are presented in solid colored lines, summing to the final predicted value shown as dots. Full impulse response functions
are shown in black with 90% confidence bands applying Newey-West standard errors. The dashed line marks the end of the estimation sample and changes for
each scenario. Original IRF refers to the results obtained using the full sample, as is done in the main analysis (Figures 7 and 8). Lavender shading corresponds
to NBER recessions.

El Nifio, characterized by a global temperature surge, is followed by a cooling period
associated with La Nifia. This cancellation effect means that excluding these events
does not materially change the results. The transitory effects of climate shocks remain
significant and consistent with the main findings, but no evidence emerges to suggest
a stronger or more persistent long-run impact when these events are excluded. BK
perform a similar robustness check and reach comparable findings. The reason is clear:
although El Nifio and La Nifia are linked to periods of very strong economic growth

years later, their opposing effects largely offset each other.

. Estimating from the 1980s Onward. The third robustness check estimates the IRFs using

data from the 1980s onward, effectively excluding the 1960s and 1970s. This period
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avoids the influence of the 1964 cooling shock, the post-war boom, and the oil crises.
The results confirm that the mid-range IRF (horizons 4 to 8 years) remains broadly con-
sistent with the original findings, although it becomes marginally more muted. Impor-
tantly, the long-run effects (horizons beyond 8 years) clearly converge to zero, further
supporting the conclusion that the persistent impacts of global temperature shocks on

GDP are not robust to changes in the sample period.

4. Including a Flexible Time-Trend. The fourth robustness check introduces a cubic time
trend to capture long-run structural changes in world GDP growth. The goal is to ap-
proximate the effect of a random walk parameter for the intercept while accounting
for long-run economic dynamics excluded from the baseline regression. This flexible
trend can accommodate periods of elevated growth at the beginning of the sample,
prolonged slower growth phases, and subsequent recoveries. By allowing for smooth,
data-driven shifts in GDP growth, the cubic trend provides a nonparametric yet eco-
nomically meaningful way to control for long-term factors influencing global output

beyond the modeled climate shocks.

The inclusion of this flexible trend is supported by the adjusted R?, which steadily in-
creases up to the inclusion of a fourth polynomial term. Empirically, the effect of this
trend is to dampen the original impact of the Mount Agung volcanic eruption shock
and reduce the influence of exceptional economic growth events. Notably, it shifts the
long-run IRF into counterintuitive positive territory due to the role of the El Nifio event.
More importantly, it reduces the peak effect after six years from 12%—as reported in the
original paper—to just 5%. This highlights that specification choices regarding long-run
world GDP growth not only shape persistent effects but also influence transitory ones,

at least quantitatively.

These findings suggest that the effects of global temperature on GDP are likely less persistent
than originally stated. In this regard, they align more closely with earlier studies, such as
Nordhaus (1992) and Dell et al. (2012), which indicate relatively modest long-run impacts.
Moreover, even the observed transitory impacts appear to align with periods of robust global
economic growth—namely 1965-1974 and the early 2000s—usually assumed to have been

driven by structural factors unrelated to climate shocks.

3.4 Financial Shocks

In our final application, we decompose the responses of real activity and the interest rate to an

adverse financial shock. Following the recent literature (Mumtaz and Piffer, 2022; Barnichon
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et al., 2022; Hauzenberger et al., 2025), we examine potential nonlinearities in shock transmis-
sion and explain them by comparing evidence curves from a linear, OLS-based model and a
nonlinear specification based on a Random Forest.

Data is taken from FRED-MD, except for the excess bond premium (EBP), which serves
as our shock series and is taken from Gilchrist and Zakrajsek (2012). It spans the period
from 1974M1 to 2024M5. We adopt a standard setup that includes industrial production, CPI
inflation, unemployment rate, EBP, national financial conditions index (NFCI), S&P500 stock
market index, and federal funds rate (as in, e.g., Forni et al., 2024). We include 12 lags for all
variables and a linear trend, and account for serial correlation in the error term by applying
the Newey-West standard errors (Newey and West, 1987). To assess potential asymmetries
between the linear and nonlinear models, we estimate the response to a large shock of two

standard deviations.

MAIN FINDINGS. Aligning with the theoretical literature (Brunnermeier and Sannikov,
2014), we find that large adverse financial shocks trigger far-reaching effects in the real econ-
omy, with responses disproportionately larger than those predicted by the linear model (see
left panel in Figure 10). The nonlinear model detects a faster and more pronounced reaction,
with real activity peaking at i = 11, whereas the linear model shows a slower adjustment,
reaching its maximum effect only after 18 horizons. A similar pattern emerges for inter-
est rate responses (see right panel in Figure 10). The nonlinear model adjusts considerably
faster—peaking after one year compared to 26 months in the linear model. Both models yield
responses of similar magnitude.

While the evidence curve of the linear model suggests that financial shocks became more
relevant after 2000, the nonlinear evidence curve already begins trending downward in the
1970s. This finding indicates that financial shock transmission is not merely a recent phe-
nomenon. As discussed in the vast literature on financialization, the 1970s mark the begin-
ning of a more finance-driven economy, with deregulation measures spurring the transition.
The process then gained momentum in the 1990s and 2000s, as capital markets expanded and

tinancial innovation accelerated (Epstein, 2005; Krippner, 2005).

ANALYSIS OF PROXIMITY SCORES. The distributions of weights, as shown in Figure 11,
are particularly telling about the fundamental differences between the nonlinear and lin-
ear model. While certain features of the linear model’s weighting structure carry over to
the nonlinear framework, we find that the Random Forest offers greater interpretability.
Its sparse weighting scheme arguably helps to assess contributions and understand the re-
sponses, which can be more challenging in denser or volatile structures, such as those found

in linear model. For the latter, the raw weighting structure remains identical across target
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Figure 10: Responses to an Adverse Financial Shock
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Notes: The plot presents responses of industrial production and the federal funds rate to an adverse financial shock, measured by the excess bond premium
Gilchrist and Zakrajsek (2012). The sample starts in 1974M1 and ends in 2024M5. The linear model refers to OLS-based estimation, the nonlinear model uses a
Random Forest. Evidence curves for both models are shown for the peak horizon from estimating the Random Forest model. Cumulative contributions Y1 ; cy,
are displayed before the dashed line, which marks the end of the estimation sample. Full impulse response functions are shown after the dashed line. In the
linear model, we report 84% confidence bands applying Newey-West standard errors. For the nonlinear model, we present the mean and the 16/ and 84" per-
centile of the tree distribution (see Section A.2).

variables. While smoothing techniques aid in revealing patterns, they do not fundamentally
alter the interpretation. In contrast, the nonlinear model offers a more transparent means of
comparing distinct financial episodes, making it particularly useful for examining economic
shocks beyond standard regression coefficient analysis.

For real activity, the nonlinear model’s weighting structure suggests that the response to
large negative financial shocks can be effectively understood in terms of two distinct clusters:
1) normal financial conditions, characterized by minor or positive shocks, 2) financial distress
episodes, marked by significant downturns, with the most extreme event occurring at the on-
set of the GFC (peaking in 2008M1 for real activity). While this peak is also present in the
linear model, the nonlinear approach provides a more precise identification of key episodes,
particularly in the 2000s (2000M9 and 2002MS8), corresponding to the stock market turbu-
lences from the dot-com bubble, and a few events in the 1980s (1986M8 and 1982M3). Addi-
tionally, the nonlinear model uniquely captures certain spikes, such as 2015M12 and 1989M?7,
which are either absent or less pronounced in the linear model. The 1980s dates coincide
with heightened stock market volatility combined with a restrictive monetary policy stance,
whereas 2015M12 marks the first rate hike since 2006. Notably, these spikes appear primarily
in the real activity weighting, with no corresponding patterns in interest rate responses.

While the GFC is key in driving the real activity response, the early 2000s recession has
a milder impact, reflecting the milder contraction. The remaining spikes” contribution to the
IRF is limited, as they do not coincide with extreme realization in real activity. However, their
identification suggests that the model recognizes plausible intervention episodes related to

ECB Working Paper Series No 3105 44



Figure 11: Proximity Scores for Financial Shock
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Notes: The left panel shows proximity scores from the linear model, with smoothed weights averaged over 12 months. The right panel shows proximity weights
from the nonlinear model, which can differ between targets. The estimation sample starts in 1974M1 and ends in 2019M12. Lavender shading corresponds to
NBER recessions.

adverse financial shocks.

The weighting structure for interest rate responses in the nonlinear model exhibits greater
sparsity than for real activity. A few critical events dominate, particularly the response to
the dot-com bubble and the September 2001 terrorist attacks. Nonlinear proximity scores
peak in 2000M9 and 2002M11. In contrast, the model assigns less importance to the GFC
in driving interest rate responses, likely because monetary policy was constrained by the
zero lower bound, limiting conventional rate adjustments to financial shocks. The weight-
ing scheme thus highlights how financial shocks prompted rapid and aggressive monetary

easing, whereas the GFC exerts a comparatively weaker influence within this framework.

UNCOVERING NONLINEARITIES VIA CLUSTERING. Finally, we apply our clustering ap-
proach as described in Section 2.3, which helps to uncover additional nonlinearities. As
shown in Figure 23 (Appendix), we identify two distinct clusters for both variables.” In both
cases, Cluster 1 exhibits a fast and strong response, reinforcing the patterns observed in the
aggregate nonlinear responses. In contrast, Cluster 2 closely resembles the linear model,
trending downwards after 2000 and yielding a response of similar magnitude for both vari-
ables. A closer look at the corresponding weighting structure in Figure 24 (Appendix) reveals
the sources of nonlinearities and suggests a structural break for Cluster 1. The latter clearly
highlights periods in the 1970s and 1980s—proximities not observed in Cluster 2 and the

linear model.

9Note that cluster labels are assigned independently for each variable. Real activity and interest rate clusters
are estimated separately, and their numbering does not imply direct correspondence.
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4 Conclusion and Directions for Future Research

Local projections are widely used in empirical macroeconomics to flexibly and straight-
forwardly estimate impulse response functions. While the properties of the estimator it-
self are now well-known, that of a given estimate constructed from a given finite sample is
application-dependent and equally important. This paper introduces a decomposition of LP
estimates into a sum of historical contributions, where each period’s contribution is the prod-
uct of a weight and the response variable’s realization. Under least squares, these weights
correspond to proximity scores between the projected policy intervention and past interven-
tions in the sample.

This decomposition serves as a diagnostic tool. First, it reveals whether an estimate is in-
formed by a broad range or a narrow subset of historical episodes, with concentration statis-
tics documenting the extent of support. Second, it allows us to assess whether weights and
contributions align with historical narratives, helping diagnose empirical puzzles and refine
identification strategies.

Beyond linear models, our framework extends naturally to nonlinear machine learning-
based impulse responses. Many such algorithms yield responses that, while nonlinear in
regressors, ultimately represent a weighted sum of past realizations. Our approach thus pro-
vides a means to interpret and explain these more flexible methods with the same level of
transparency as traditional LPs.

We illustrate the framework with applications to monetary, fiscal, climate, and financial

shocks. The most salient facts are:

* Monetary policy: Cholesky VAR shocks produce a price puzzle due to misinterpreta-
tion of 1970s stagflation episodes, while Romer and Romer (2004) shocks rely almost
entirely on politically driven monetary loosening in the 1970s. Nonlinear IRFs with
Random Forest further refine the set of events used for identification and pin down

specific events of political interference with the Fed in the early 1970s.

* Fiscal policy: Ramey and Zubairy (2018) state-dependent fiscal multipliers in reces-
sions are largely driven by a single historical event—World War II. Other estimates of
fiscal policy effects are also quite dependent on single military events, like the Korean

War, raising general concerns about external validity.

¢ Climate shocks: The long-run GDP damage from global temperature shocks reported
in Bilal and Kénzig (2024) appears fragile, being primarily driven by a single 1960s
volcanic eruption coupled with sustained post-war economic growth. The medium

term effects appear more robust and fairly well supported by various data points.
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¢ Financial shocks: Comparing linear and nonlinear responses highlights which histor-
ical events are upweighted to generate commonly observed size and sign-dependent
effects. Main differences appear in the treatment of the period before 2000 and the
Great Financial Crisis. We also highlight that the weights retrieved from Random For-
est, by the virtue of being much sparser in terms of proximity scores, turn out to be

much easier to interpret than that of linear models.

By shedding light on the historical foundations of LP estimates, this framework enhances
transparency and interpretability. Moreover, interpretation via data points instead of pre-
dictors allows to bridge the gap between traditional econometric methods and more flexible

machine learning approaches.

SOME AVENUES FOR FUTURE RESEARCH. We focused on local projections, which natu-
rally accommodate our proposed decomposition since impulse response coefficients are lin-
ear functions of the target variable at each horizon. In contrast, while vector autoregressions
are linear models, their impulse response functions are nonlinear in the targets—particularly
beyond horizon 1—due to the recursive multiplication of the dynamic impact matrix. As a
result, decomposing the structural VAR form is straightforward, but doing so for the vec-
tor moving average representation, which delivers the parameters of real interest, is more
complex.

In such settings, one could resort to sampling-based methods or more sophisticated, com-
putationally intensive tools such as Shapley values, which can decompose the output of a
broad class of nonlinear operators (Goulet Coulombe et al., 2023). For instance, the data-
Shapley framework of Ghorbani and Zou (2019) could be employed to attribute IRF estimates
to specific realizations of all dependent variables in the system. This general approach could
also be applied to historically decompose other popular yet opaque objects that are nonlinear
combination of data points, such as Cholesky-factorized matrices.

In this paper, we largely abstract from the consequential choices researchers make when
selecting controls in local projections. While control selection is typically specified, it is well
understood that a manual process underlies these decisions, inevitably affecting the sign and
magnitude of estimated causal effects. Here, we adhere to the authors’ chosen specifications
when available or follow standard practices in the literature. However, given the significant
role of control selection—particularly for subtle economic shocks such as post-1990 monetary
policy surprises—it would be valuable to decompose local projections into the sum of con-
tributions from different controls, whether the conditional mean model is estimated via least
squares, Lasso, or Random Forests. This would provide greater transparency by clarifying

how variable inclusion or exclusion influences impulse response functions.
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A Appendix

A.1 Additional Graphs and Tables

Figure 12: Proximity Weights for Price Puzzle Resolutions

Medium-sized VAR VAR with Inflation Expectations

1_.

T T T T T T T T T T
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
— Raw Weights —— Smoothed Weights

Notes: The plot displays proximity scores between the intended policy intervention and past interventions. Smoothed weights are averaged over six months.
The left panel is estimated with a medium-sized VAR with short run restrictions. The right panels use inflation expectations in addition to the 4-variable VAR.
In both cases, the estimation sample starts in 1970M3 and ends in 2019M9. Lavender shading corresponds to NBER recessions.
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Figure 13: Moving Averages of Contributions for Different Specifications for Monetary Policy
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Notes: The figure shows moving averages over 12 months (upper panels) and 36 months (lower panels) for different specifications used to analyze the effects of
monetary policy shocks at two horizons (# = 24 and i = 48). The Cholesky VAR and the medium-sized VAR span from 1970M3 to 2019M9, while the specifi-
cation using Romer & Romer shocks extends from 1970M3 to 2004M1.

Table 1: Concentration Measures for Monetary Policy

| wC | cC
| |

Inflation

Romer & Romer 0.33 " " 0.44 0.40 0.40
Cholesky VAR 0.37 " " 0.53 0.49 0.48
Medium-sized VAR 0.27 " " 0.42 0.40 0.39
VAR with Inflation Expectations 0.31 " " 0.48 0.44 0.43
Unemployment

Romer & Romer 0.33 " " 0.49 0.40 0.41
Cholesky VAR 0.38 " " 0.52 0.43 0.43
Medium-sized VAR 0.27 " " 0.40 0.39 0.39
VAR with Inflation Expectations 0.31 " " 0.47 0.37 0.37
Nonlinear Estimation

Inflation (expansionary) 0.36 0.38 0.33 0.45 0.50 0.44
Inflation (contractionary) 0.41 0.42 0.39 0.43 0.46 0.47

Notes: The table summarizes concentration statistics as discussed in Section 2.4. We choose Q = 10.
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Figure 14: Cosine Similarities for Monetary Policy Shocks

Cholesky VAR Romer & Romer
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Notes: The plot shows proximity scores w; expressed as the product of the scale-invariant alignment, i.e., cosine similarities in the upper panel, and the magni-
tudes, measured by the l-norm of F; in the lower panel. For more details see Section 2.2. The Cholesky VAR sample spans from 1970M3 to 2019M9, while the
specification using Romer & Romer shocks extends from 1970M3 to 2004M1

Figure 15: Proximity Scores for Nonlinear Estimation of Monetary Policy Shocks

Raw Weights Smoothed Weights
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Notes: The plot displays proximity scores between the intended policy intervention and past interventions estimated with a Random Forest. Note that for non-
linear models proximity scores differ for each horizon. Smoothed weights are averaged over six months. The shock series is scaled to match the mean absolute
deviation of the weights series. Lavender shading corresponds to NBER recessions.
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Figure 16: Clusters in the Nonlinear Response of Inflation to Monetary Policy Shocks

Cluster 1 Cluster 2

Expansiona
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Notes: The plot partitions the main results of nonlinear responses of inflation to monetary policy shocks, as shown in Figure 4, into two clusters using k-means
clustering. Cluster 1 for the expansionary monetary policy shock comprises 57% of the data, while cluster 2 accounts for 43%. For the contractionary shock, 95%
of data falls into cluster 1, with only 5% assigned to cluster 2. Note the cluster labels are assigned independently for each shock sign. Clusters for the expansion-
ary and the contractionary shock are estimated separately, and the numbering does not imply correspondence between them. Cumulative contributions Y1 cy,
are presented in solid colored lines, summing to the final predicted value shown as dots. Full impulse response functions are shown in black with 84% confi-
dence bands, defined by the mean and the 16 and 84" percentile of the tree distribution (see Section A.2). Lavender shading corresponds to NBER recessions.
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Figure 17: Proximity Scores for Government Spending Shock
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Notes: The plot displays the government spending shock series as identified by Ramey and Zubairy (2018), and the proximity scores between the intended inter-
vention and past interventions. Upper panels show the raw weights and shock series, lower panels present weights and shock series smoothed over four quar-
ters. Both series are scaled relative to the peak values in the raw series. Lavender shading corresponds to WWI, WWII, Korean war, Vietnam war, and Gulf war.

Figure 18: Responses of Real GDP to Government Spending Shock in Levels
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Notes: The plot shows responses of real GDP in levels to a government spending shock as defined in Ramey and Zubairy (2018) in periods of high unemployment
versus low unemployment (above/below 6.5%). Data enters estimation in levels. The estimation sample starts in 1891Q1 and ends in 2010Q4. Cumulative con-
tributions Y1, ¢, are presented in solid colored lines, summing to the final predicted value shown as dots. Full impulse response functions are shown in black
with 95% confidence bands applying Newey-West standard errors. Lavender shading corresponds to WWI, WWII, Korean war, Vietnam war, and Gulf war.
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Figure 19: Proximity Scores for Government Spending Shock in Levels
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Notes: The plot displays the government spending shock series as identified by Ramey and Zubairy (2018), and the proximity scores between the intended in-
tervention and past interventions when estimating with data in levels. Upper panels show the raw weights and shock series, lower panels present weights and
shock series smoothed over four quarters. Both series are scaled relative to the peak values in the raw series. Lavender shading corresponds to WWI, WWII,
Korean war, Vietnam war, and Gulf war.

Figure 20: Alternative Government Spending Shocks
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Notes: The plot shows responses of real GDP to a government spending shock as defined in Ramey and Zubairy (2018) and Ben Zeev and Pappa (2017). The
estimation sample starts in 1891Q1 and ends in 2010Q4. Cumulative contributions Y-/, ¢y, are presented in solid colored lines, summing to the final predicted
value shown as dots. Full impulse response functions are shown in black with 95% confidence bands applying Newey-West standard errors. Lavender shading
corresponds to WWI, WWII, Korean war, Vietham war, and Gulf war.
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Figure 21: Proximity Scores for Alternative Government Spending Shocks
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Notes: The plot displays the government spending shock series as identified by Ramey and Zubairy (2018) and Ben Zeev and Pappa (2017), and the proxim-
ity scores between the intended intervention and past interventions. Upper panels show the raw weights and shock series, lower panels present weights and
shock series smoothed over four quarters. Lavender shading corresponds to WWI, WWII, Korean war, Vietnam war, and Gulf war.

Figure 22: Responses of Real GDP to Alternative Government Spending Shocks for Different
Subsamples
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Notes: The plot shows responses of real GDP growth to a government spending shock, as identified in Ramey and Zubairy (2018) and Ben Zeev and Pappa
(2017), for three different estimation samples. Post-1960 IRF results from estimating the model starting in 1960Q1 and ending in 2010Q4. For Trimmed IRF, we set
weights at the 1st and 99th percentiles to zero for each horizon, and re-cumulate the remaining contributions to obtain the IRE. Original IRF refers to results ob-
tained using the full sample, as done in the main analysis (Figure 20). For the evidence curves we focus on the peak horizon of the original IRF. Cumulative con-
tributions Y_%__; ¢y, are presented in solid colored lines, summing to the final predicted value shown as dots. Full impulse response functions are shown in black
with 95% confidence bands applying Newey-West standard errors. Lavender shading corresponds to WWI, WWII, Korean war, Vietnam war, and Gulf war.
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Figure 23: Clusters in the Nonlinear Responses to Financial Shocks
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Notes: The plot partitions the main results of nonlinear responses to financial shocks, as shown in Figure ??, into two clusters using k-means clustering. Cluster
1 for the response of real activity comprises 39% of the data, while cluster 2 accounts for 61%. For the response of the interest rate, 31% of data falls into cluster
1, with only 69% assigned to cluster 2. Note that the cluster labels are assigned independently for each variable. Clusters for real activity and interest rates are
estimated separately, and the numbering does not imply correspondence between them. Cumulative contributions Y./_; ¢y, are presented in solid colored lines,
summing to the final predicted value shown as dots. Full impulse response functions are shown in black with 84% confidence bands, defined by the mean and
the 16" and 84" percentiles of the tree distribution (see Section A.2). Lavender shading corresponds to NBER recessions.
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Figure 24: Proximity Scores for Clustered Nonlinear Responses to Financial Shocks
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Notes: The plot shows proximity scores when partitioning the main results of nonlinear responses to financial shocks into two clusters using k-means cluster-
ing. Cluster 1 for the response of real activity comprises 39% of the data, while cluster 2 accounts for 61%. For the response of the interest rate, 31% of data
falls into cluster 1, with only 69% assigned to cluster 2. Note that the cluster labels are assigned independently for each variable. Clusters for real activity and
interest rates are estimated separately, and the numbering does not imply correspondence between them. Lavender shading corresponds to NBER recessions.
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Table 2: Concentration Measures for Government Spending

wC | cc

|
|h=8 h=12 h=15|h=8 h=12 h=15

High Unemployment

Full Sample 0.66 " "t 0.89 0.90 0.90
Trimmed Sample | 0.36 " "t 055 0.54 0.56
Post-1960 0.52 " "t 0.62 0.59 0.56

Low Unemployment

Full Sample 0.66 " " 0.81 0.81 0.77
Trimmed Sample 0.49 " " 0.70 0.67 0.68
Post-1960 0.61 " " 0.72 0.72 0.71
Ben Zeev

Full Sample 0.40 " " 0.57 0.52 0.58
Trimmed Sample | 0.29 " "t 041 0.46 0.45
Post-1960 0.32 " " 0.43 0.45 0.46

Notes: The table summarizes concentration statistics as discussed in Section 2.4. We
choose Q = 10.

Table 3: Concentration Measures for Global Temperature Shock

| k=3 h=6 h=10|h=3 h=6 h=10

World GDP

Full Sample 0.25 " " 0.27 0.28 0.33
Sample 1965-2019 0.22 " " 0.22 0.22 0.27
Sample 1963-1990 0.24 " " 0.34 0.30 0.31
Sample 1980-2010 0.21 " " 0.23 0.23 0.25
Cubic Trend 0.22 " " 0.25 0.26 0.30

Global Average Temperature
Full Sample 0.27 " "t 042 043 0.33

Notes: The table summarizes concentration statistics as discussed in Section 2.4. We choose

Q = 10.
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Table 4: Concentration Measures for Financial Shock

WC CC

| |
| h=11 h=12 h=26|h=11 h=12 h=26

Interest Rate

Linear Model 0.35 " " 0.55 0.54 0.48
Nonlinear Model 0.35 0.33 0.29 0.57 0.56 0.48

Real Activity

Linear Model 0.35 " " 0.47 0.45 0.41
Nonlinear Model 0.46 0.45 0.43 0.61 0.62 0.40

Notes: The table summarizes concentration statistics as discussed in Section 2.4. We choose
Q =10.
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A.2 A Review of Random Forest

Random Forest (RF, Breiman, 2001) is an ensemble learning method that averages over the
output of multiple regression trees. To introduce the algorithm, we first describe how a single
regression tree is estimated using a greedy algorithm, and then explain how multiple trees
are aggregated to form a forest.

A tree takes the vector of features X; for a single observation t as input and outputs the
corresponding fitted value for the dependent variable y;. Formally, this can be written as:

Y = T(Xt) + €4,

where 7 denotes the tree. For a graphical representation of a tree, we consider a simplified
example that models inflation 7t; with two features in X, the nominal rate of interest r; and a

measure of the output gap g;. A simple decision tree could take the following form:

Xt
gt >0 g <0
|
/\ T =1+¢.
re > 4% rr < 4%
| |
T = 2+ €4 T =5+ ¢

The estimation of such a tree typically relies on a greedy algorithm that recursively splits the
data, a method pioneered in Breiman et al. (1984)’s work on Classification and Regression
Trees (CART). The splitting is determined by

min _|min ) (yr— 111)? + min Y. (y: — 2)* |. (A1)
RERAER | 1 e X, <c) 2 frer| X, >d)

In this equation, ) rllcnian refers to the minimization over all possible splits, with K the number
ek.de

of available features, and d a real number representing the split point. £ denotes a leaf, which
reflects the subset of features considered by the algorithm to estimate the next split. Initially,
L consists of the entire training sample. The algorithm then recursively partitions £ into
smaller subsets until a stopping criterion is met, resulting in a set of terminal nodes. Note
that in our illustrative example of modeling inflation, the tree has three terminal nodes. The

optimized values k* and c* as well as the predicted values y; and 5, presenting within-leaf
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sample averages, are obtained by minimizing the total within-leaf sum of squared errors.

In a Random Forest, trees serve as base learners, and the final step is to combine them
by taking the average of their predictions. For this process, we rely on three steps. First, to
minimize bias, trees are typically grown to substantial depth. This implies continuing the
splitting process in (A.1) until all terminal nodes contain very few observations (usually less
than five and set via minimal.node.size). Second, applying the Bagging strategy (Boot-
strap Aggregation, as in Breiman, 1996), we generate B bootstrap samples, selecting [y; X]
pairs with replacement. Each tree in the forest is constructed using a single bootstrapped
sample b € 1,...,B. Each tree is trained on one such sample, introducing variability that
is critical for ensemble effectiveness. Third, the tree-growing process incorporates feature
selection randomness: at each split, a random subset K~ C K of predictors is considered,
the relative size of which is controlled via the mtry parameter. This further decorrelates
the trees, which is essential for reducing variance when predictions are averaged across the

forest. The final RF prediction is the simple average over all B tree predictions, resulting in
Jeen = § Lo Ton(Xo).

A.2.1 Implementation Details

In our applications, we implement Random Forests using the ranger package in R. All ar-
gument names referenced below correspond to those in that package. Specifically, we set
min.node.size = 5 and use arelatively low mt ry value, equal to 1/15 of the total number
of predictors, to encourage tree diversity and mitigate overfitting. To ensure that key fea-
tures—namely, lags of the target variable and the shock series—remain central throughout
the model, we invoke the always.split.variables option. This forces these variables
into the candidate set K~ at every split, thereby anchoring the model on features that are of
primary interest for our impulse response analysis.

This combination of low mt ry and forced splitting on shock-related variables introduces a
form of selective regularization: it nudges the ensemble toward repeatedly using the variable
of interest (e.g., the policy shock), thus increasing its visibility in the forest’s predictive struc-
ture. Without this adjustment, most shock series considered in our applications would be
effectively ignored by RF, as their standalone predictive power is low relative to other avail-
able predictors. In this sense, the approach aligns with a Bayesian philosophy, where the
treatment variable is regularized less aggressively than other features—not through explicit
priors, but through design choices that prioritize its inclusion. This avoids the complexity
and data inefficiency of more formal alternatives such as double machine learning or honest
forests, which typically require splitting the sample into auxiliary subsamples—an approach

less amenable to historical macroeconomic analysis.
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Empirically, this strategy proves reasonable: in both the monetary policy and financial
shock applications, the Random Forest impulse responses are broadly consistent with, and
often comparable in magnitude to, those from the linear model. Moreover, we tested the
sensitivity of our results to the choice of min.node.size = 5, which can affect in-sample
overfitting, and found the results to be robust. Thus, our use of imbalanced regularization
in favor of the shock variable appears both principled and effective. Nonetheless, integrat-
ing our interpretability framework with more sophisticated causal forest methods remains a

promising avenue for future work.
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