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Abstract

This paper examines whether firm-specific cyclical and idiosyncratic risk pro-
files influence corporate bond spreads and the transmission of monetary policy.
I extend the standard excess bond premium (EBP) framework of Gilchrist &
Zakraǰsek (2012) to allow investors’ required compensation for default risk to
vary with firm-level risks. Incorporating these effects reveals that a significantly
larger share of a monetary policy shock’s impact on credit spreads is driven by
changes in default risk compensation (as opposed to the EBP). In particular, for
firms with more cyclical risk, up to one-fourth of the additional spread widening
following a contractionary monetary policy shock reflects higher expected de-
fault compensation, substantially more than implied by the traditional EBP. By
contrast, firms with high idiosyncratic risk show no strong differential response
to monetary policy shocks relative to other firms.
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Non-technical summary

This paper explores how corporate bond yields rise when the central bank tightens policy and,

in particular, whether the increase reflects a higher risk of default or broader market conditions

such as investor risk appetite and liquidity. A large recent literature shows that most of the

immediate rise in spreads following a monetary policy tightening shock comes from the “excess

bond premium” (EBP), that is, the part of the spread not explained by default risk. The EBP

is commonly viewed as a barometer of the financial sector’s risk-bearing capacity and prevailing

liquidity conditions. This paper explores whether the way in which firms’ risk profiles differ

matters for how monetary policy passes through to credit costs.

To study this, the paper extends the standard EBP framework in order to allow for com-

pensation for default risk to vary with two firm characteristics that investors observe and price:

how sensitive a firm is to the business cycle (its cyclicality) and how volatile it is for firm-

specific reasons (its idiosyncratic risk). The analysis brings this idea to the data by combining

a large weekly panel of US corporate bonds since 2016 with firm-level stock market data and

high-frequency measures of monetary policy surprises around Federal Reserve announcements.

I find that firm risk profiles are important drivers of credit spreads and of how default risk is

compensated.

Three additional findings emerge. First, at the aggregate level, monetary tightening still

raises corporate spreads mainly by increasing the EBP rather than by sharply boosting com-

pensation for expected default risk. However, under the new formulation, a larger fraction of

the credit spread response to monetary policy shocks is explained by changes in compensation

for default risk, although most of the average effect still goes through the EBP. Second, once

the pricing of default risk is allowed to differ depending on firms risk profiles, fundamentals

play a noticeably larger role for companies that are highly cyclical: for these firms, up to about

one quarter of the additional spread widening after a contractionary policy surprise reflects

higher compensation for default risk, compared with roughly eight percent under the traditional

EBP calculation. In other words, using the augmented EBP reveals that fundamentals (default

risk) play a bigger role in the heterogeneous transmission to these firms’ spreads than previously

thought. Third, firms with high idiosyncratic risk do not display a significantly larger sensitivity

of spreads to monetary shocks beyond what their default risk would already imply. This result

intuitively aligns with the notion that a monetary shock is an aggregate disturbance: firms fac-
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ing primarily idiosyncratic volatility are not disproportionately affected by macro shocks beyond

what their default risk would suggest.

1 Introduction

How does monetary policy transmit to corporate bond spreads, and what is the role of firm-

specific risks in determining the relative importance of these? A growing body of evidence shows

that much of the impact of monetary tightening on corporate bond spreads operates through

increases in the portion of spread that is not explained by compensation for default risks, that

is, the excess bond premium (EBP), rather than through higher expected default losses (see,

for example, Anderson & Cesa-Bianchi (2024), Chiţu et al. (2023) or Ferreira et al. (2023)).

This contrasts with traditional theory (see Bernanke & Gertler (1995)), which predicts that a

monetary tightening raises default risk and thus widens spreads via higher default compensation.

The EBP, first introduced by Gilchrist & Zakraǰsek (2012), is typically interpreted as a

measure of the risk-bearing capacity of the financial sector and should therefore go beyond

compensation for risks associated with interest rate expectations or credit risk. It captures

factors like market sentiment, liquidity conditions, and other macroeconomic uncertainties that

affect bond prices. For that, an increase in the EBP reflects a reduction in the risk-bearing

capacity of the financial sector.1 The pricing of corporate bonds is influenced by a variety of

factors beyond traditional credit risk metrics. Bonds with similar credit ratings or default prob-

abilities can trade at significantly different yields, suggesting that factors beyond fundamental

default risk are at work. Indeed, non-fundamental factors, such as noise trading or behavioral

biases, can substantially influence bond prices, causing them to deviate from their intrinsic

values. Other considerations include market segmentation (see, for example, Holm-Hadulla &

Leombroni (2022)) or differences in liquidity.

In this paper, I investigate the role of two concrete firm-level risk measures (a firm’s cyclicality

and its idiosyncratic risk) in shaping credit spreads and the heterogeneous response to monetary

policy shocks. These risks are observable to investors to some extent, and investors may price

1This induces a contraction in the supply of credit and a deterioration in macroeconomic conditions, and has
been shown to have predictive power over economic activity. In particular, Gilchrist & Zakraǰsek (2012) show that
positive shocks to the EBP that are orthogonal to the current state of the economy lead to declines in economic
activity and asset prices. They show that the excess bond premia provides a timely and useful gauge of credit
supply conditions and that a reduction in the supply of credit (an increase in the excess bond premium) causes
a drop in asset prices and a contraction in economic activity through the financial accelerator mechanisms (see
Bemanke & Gertler (1989), Kiyotaki & Moore (1997), Bernanke et al. (1999), Hall (2011)).
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bonds differently ex ante depending on a firm’s risk profile. The central hypothesis is that the

standard EBP calculation, which assumes a linear relationship between default risk and spreads,

may overlook nonlinearities: investors could demand different compensation for a given change

in default risk depending on the firm’s risk profile. In particular, the premium required for a

rise in default risk might be higher for firms that are already very sensitive to the business cycle,

compared to more stable firms.

The contribution of the paper is twofold: first, after estimating firm-level exposure to cyclical

and idiosyncratic risks, I reformulate the EBP to account for these and, second, I test how this

affects the heterogeneous transmission of monetary policy shocks into credit spreads components.

I reformulate the EBP computation to allow for, first, heterogeneity in default-risk pricing across

firms and, second, for changes in default risk to translate into changes in compensation for default

risks that depend on firm-level cyclical and idiosyncratic risks. Intuitively, this means that, for

example, a change in a firm’s default probability can have a larger impact on its corporate

bond spread if the firm is highly cyclical. I find that these two types of risks are important

determinants of credit spreads.

Second, I empirically evaluate how accounting for these nonlinear effects alters the trans-

mission of monetary policy shocks through credit spreads. In particular, I examine whether the

share of the impact of a monetary policy shock that is attributed to default-risk compensation

vs. the EBP differs when firm risk profiles are taken into account, relative to the traditional

approach in the literature. I find that under the new formulation, a larger fraction of the credit

spread response to monetary policy shocks is explained by changes in compensation for default

risk, although a large proportion of the transmission still goes through the EBP. Moreover, for

firms with more cyclical risk profiles, up to one fourth of the additional increase in spreads

that follow a contractionary monetary shock is driven by higher compensation for default risk,

whereas only roughly 8% is attributed to default risk under the traditional EBP computation.

In other words, using the augmented EBP reveals that fundamentals (default risk) play a bigger

role in the heterogeneous transmission to these firms’ spreads than previously thought. Sec-

ond, there is a stark heterogeneity across risk dimensions: cyclical risk emerges as an important

driver of differential spread responses, while idiosyncratic risk does not. Bonds of firms with

high idiosyncratic risk do not exhibit any excess sensitivity to monetary policy shocks: their

spreads move in line with those of other firms. This result intuitively aligns with the notion that

a monetary shock is an aggregate disturbance: firms facing primarily idiosyncratic volatility are
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not disproportionately affected by macro shocks beyond what their default risk would suggest.

These findings contribute to the literature on the credit channel of monetary policy by

highlighting the importance of firm heterogeneity. They show that the formulation of default-risk

compensation plays a crucial role in shaping the EBP, and in measuring how monetary shocks

transmit through credit markets. Finally, they show that cyclical risk, and not idiosyncratic

risk, drives heterogeneous responses to monetary policy shocks.

The paper is organised as follows. Section 2 reviews the literature; Section 3 presents the

data sources; Section 4 presents the methodology to compute firm-level cyclical and idiosyncratic

risks; Section 5 computes and presents the reformulated excess bond premia; Section 6 studies

the heterogeneous response of corporate bond spreads to monetary policy shocks; and Section

7 concludes.

2 Related Literature

This paper is, first, related to the strand of the literature that focuses on understanding the

drivers of corporate bond prices and, in particular, on the so-called credit spread puzzle, that is,

the finding that less than one-half of the variation in corporate bond spreads can be attributed

to the financial health of the issuer (see for example Elton et al. (2001), Collin-Dufresne et al.

(2001), Houweling et al. (2005), and Driessen (2005). The seminal paper Gilchrist & Zakraǰsek

(2012) decomposes the credit spreads into a component capturing the countercyclical move-

ments of spreads in expected defaults, and a component representing the cyclical changes in

the relationship between the measured default risk and credit spreads, that is, the EBP. From

a European perpective, De Santis (2016) focuses on corporate bonds in the euro area and dis-

tinguishes between credit risk, systematic risk, and a ”pricing error”; and Bleaney et al. (2016)

shows that bond spreads are a robust predictor of economic activty across European countries.

A large group of studies have focused on understanding the drivers of cross-sectional hetero-

geneities in corporate bond prices. Bonds with similar credit ratings or default probabilities can

trade at significantly different yields, suggesting that factors beyond fundamental default risk

are at work. Empirical evidence supports this view: for example, Collin-Dufresne et al. (2001)

find that the majority of monthly credit spread changes cannot be explained by firm-specific

variables, and instead appear to be principally driven by local supply/demand shocks unrelated

to credit risk or liquidity. Another key consideration is market segmentation and investor het-
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erogeneity. Differences in who holds a bond can lead to differences in how it is priced and how

it reacts to shocks. As a result, if the corporate bond market is segmented, similar bonds may

carry different premia depending on their investor base.2 Holm-Hadulla & Leombroni (2022)

study the corporate bond yields response to European Central Bank policy announcements de-

pending on the type of investors, and find that corporate bonds with higher mutual fund shares

exhibit larger reactions to announcements. In a similar line, Kirti & Singh (2024) focus on the

role of insurers. A further driver of cross-sectional heterogeneity is liquidity differences across

bonds. Bao et al. (2011) show that the illiquidity in corporate bonds is substantial, significantly

greater than what can be explained by bid–ask spreads, and establish a strong link between

bond illiquidity and bond prices. Calomiris et al. (2022) study the role of indexation in driving

increased demand. While all these factors drive cross-sectional heterogeneities in corporate bond

spreads, what drivers the cross-sectional heterogeneity of the bond-level excess bond premia has

remained understudied.

Firm risks have indeed been shown to reflect in corporate bond spreads. Campbell & Tak-

sler (2003) uses panel data for the late 1990s to show that idiosyncratic firm-level volatility

can explain as much cross-sectional variation in yields as can credit rating. Crouzet & Mehro-

tra (2020) compare corporate bond spreads for small and large firms over the business cycle.

Finally, Gabaix et al. (2025) propose upgrading credit pricing and risk assessment through em-

beddings. In this paper I aim at complementing those findings by showing how firms’ risk

profiles are important drivers of compensation for default risk and, therefore, of the resulting

EBP computation.

An separate strand of the literature is one that focuses on the heterogeneous transmission

of monetary policy shocks to corporate bonds. Palazzo & Yamarthy (2022) find a positive

relation between corporate credit risk and unexpected monetary policy shocks during FOMC

announcement days. Moreover, Anderson & Cesa-Bianchi (2024) examine how heterogeneity

in firm leverage influences the sensitivity of the EBP to monetary policy shocks. Extisting

research has documented a heterogeneous response of the EBP to monetary and global risk

shocks (see Chiţu et al. (2023)), and to monetary policy shocks across risk-aversion regimes (see

Domenech Palacios & Jančoková (2025)). Similarly, Ferreira et al. (2023) posit that firms with

2For example, if traditional long-term investors (e.g. pension funds, banks, insurance firms) avoid certain
securities entirely (such as high-yield bonds or bonds that are just above the investment-grade cut-off and therefore
assessed to be at risk of being downgraded), those bonds can end up concentrated in the hands of specialized
investors who require higher excess returns.
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high cyclicality of default risk experience a substantially larger rise in the EBP when market

returns fall, and interpret the EBP as a measure the compensation investors require for the

cyclicality of default risk. In this paper I pursue three goals: (i) quantify more generally how

firms’ risk profiles shape credit spreads; (ii) incorporate this channel into the measurement of

compensation for default risk; and (iii) assess the heterogeneous transmission of monetary policy

to credit spreads once heterogeneity in firms’ risk compensation is taken into account.

3 Data

3.1 Bond-level credit spreads, equity prices, and additional firm-level infor-

mation

I use Moodys’ Analytics Credit Edge for corporate bond market data. The data tracks secondary

market prices of corporate bonds of US listed firms and information of the issuing firm. I retrieve

US data for non-financial firms, which is available since 2016. I keep senior unsecured bonds

as in Gilchrist & Zakraǰsek (2012) and keep only those bonds with maturity longer than one

year. The Moody’s CreditEdge dataset provides secondary-market option-adjusted spreads for

publicly listed firms, resulting in 1,592 U.S. companies and 21,654 bonds. The data are at a

weekly frequency, with observations recorded each Friday.

The data contains information on bond characteristics, such as maturity date, coupon, dura-

tion, yield to maturity, amount outstanding, and rating, among others. It also contains firm-level

information and balance sheet data, including total book assets, total current liabilities, current

debt, asset value, asset volatility, and default point.

I obtain stock price data from Datastream. After merging the two sources, the final sample

includes 1,361 firms (19,978 bonds) for which both credit spreads and stock price data are

available.

3.2 Monetary policy surprises

To address endogeneity issues related to the fact that variations in the federal funds rate are

driven by the Federal Reserve’s endogenous response to aggregate economic conditions, it is

common to use high frequency identification techniques. That implies using the change in the

federal funds rate implied from a federal funds futures contract computed using a narrow 30-

minute window of time around a monetary policy announcement by the FOMC, as pioneered by
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Kuttner (2001) and followed by Gurkaynak et al. (2005) and Swanson (2021). The underlying

idea is that, because futures contracts provide a measure of market participants’ expectations of

future interest rates, the high frequency reaction is interpreted as a noisy proxy for an exogenous

monetary policy shock. Because of the short time horizon, the measure is not contaminated by

other unrelated news.

However, it is possible that the monetary policy event not only contains information about

monetary policy but also about the central bank’s assessment of the economic outlook, as shown

in Jarociński & Karadi (2020). I use shocks constructed following their methodology to isolate

pure monetary policy news from other contemporaneous non-monetary information embedded in

interest rate surprises.3 Figure A.1 plots the obtained series of shocks, and Table A.1 summarises

the statistical properties of the obtained shocks.4

4 Cyclical and idiosyncratic risks

4.1 Measuring cyclical and idiosyncratic risks

Using firm-level stock return data for U.S. listed firms and an aggregate market index at daily

frequency, I first compute firm-level measures of cyclical and idiosyncratic risks by analysing

each firm’s sensitivity to aggregate market fluctuations, as well as the volatility of its returns

unexplained by market movements.

Specifically, I calculate log returns for the aggregate market index and for each firm i at a

monthly frequency as:

rmt = (ln(pmt )− ln(pmt−1))× 100, rit = (ln(pit)− ln(pit−1))× 100

where pmt and pit denote the prices at time t. I proxy market movements with the SP500

index. The sample covers the period from 2000 to 2024, comprising 1361 publicly traded U.S.

firms drawn from Datastream, consistent with the coverage available in Moody’s as described

3The decomposition is achieved by a simple rotation of the covariance matrix of high-frequency movements
in interest rates and stock market prices in a narrow window around the policy announcement. The identifying
restriction is based on the following assumption: shocks that lead to a negative comovement of interest rate and
equity prices are interpreted as driven by monetary policy news, while shocks that lead to a positive comovement
of interest rates and equity prices are interpreted as driven by nonmonetary news.

4Due to the outlier event on 20 March 2020, I replace the corresponding shock with zero. This adjustment
does not affect the results in the following sections, as either COVID-related dummies are included or the period
is excluded from the analysis.
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in Section 3.

In a second stage, for each firm i, I estimate the following linear factor model:

rit = αi + βi rmt + εit (1)

where βi represents the firm’s return sensitivity to market movements and εit is the residual

return component. This framework closely follows the standard market model, consistent with

the Capital Asset Pricing Model (CAPM), in which βi serves as the measure of systematic risk,

and the variance of the residuals captures firm-specific idiosyncratic risk. The coefficients are

estimated using ordinary least squares (OLS).5

I interpret the estimated βi as follows:
βi > 1, highly cyclical: firm i is more sensitive than the market,

0 < βi < 1, pro-cyclical: firm i moves with the market, but less so,

βi < 0, counter-cyclical: firm i moves opposite to the market.

To quantify idiosyncratic risk, I calculate the variance of the regression residuals εit, which

measures the extent of variation of the return unexplained by market movements and thus

indicates how much firm i returns are driven by idiosyncratic factors rather than systematic

co-movement with the market. I therefore proxy cyclical risk with the firm-level beta coefficient

and idiosyncratic risk with the variance of the regression residuals from the market model. This

approach corresponds to an ex-post, realized estimation of systematic and idiosyncratic risk

exposures based on historical returns. This simple method is standard in the literature (see, for

example, Bekaert et al. (2012) or Bartram et al. (2018)).

Figures 1a and 1b display the density distributions of computed cyclical and idiosyncratic

firm-level risks.6 , 7 To assess the role of Covid-related disruptions, and the potential introduction

of atypical dynamics, in the computation I repeat the analysis excluding 2020 (dashed line).

5Note that, since the focus is on the co-movement between a firm’s returns and that of the market, rather than
on the co-movement of compensation for risk, the risk-free rate is not subtracted. In contrast, the CAPM model
typically emphasizes compensation for risk above the risk-free rate (systematic risk), thereby isolating excess
returns. For reference, Figure A.2 displays the distribution obtained when computing cyclical and idiosncratic
risks as excess returns compared to the baseline and shows a similar distribution of firm-level betas.

6Tables A.2 and A.3 report key moments and percentiles of the resulting distributions of cyclicality and
idiosyncratic risks, where the rightmost column shows the results excluding the year 2020.

7To mitigate the influence of extreme values, I winsorize firm-level betas at the 1st and 99th percentiles.
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Figure 1: Distribution of risk and bond spread relationships by firm-level risks
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Notes: Top row: density distributions of cyclical (left) and idiosyncratic (right) risks (2000–2024; “Excl. 2020”
excludes 2020 observations). Middle row: median OAS by cyclicality quintiles (left) and vinned scatterplot for
cyclicality vs ln(Spread), residualized for date and industry fixed effects (right). Bottom row: median OAS by
idiosyncratic risk quintiles (left ) and binned scatterplot for idosyncratic vs ln(Spread), residualized for date and
industry fixed effects (right).

4.2 Cyclical and idiosyncratic risks, and credit spreads

Figures 1c and 1e illustrate that bonds issued by firms in the highest quaintile of cyclicality

or idosyncratic risks exhibit a systematically higher median option-adjusted spreads compared

to those in the lowest quantile. Indeed, the simple correlation between the measure of firm-

level cyclicality and option-adjusted spreads is 23%, while the correlation between firm-level
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idiosyncratic risk and spreads is 17%. Figures 1d and 1f show that this relationship remains

statistically significant even after controlling for time and industry fixed effects.8

5 Augmented Excess Bond Premia

5.1 Measuring default risk

The distance to default (DD) measure is grounded in the structural credit risk model of Merton

(1974). In this framework, a firm’s equity can be viewed as a call option on the firm’s assets, with

a strike price equal to a critical default threshold (the “default point”). Intuitively, shareholders

will choose to default (and let equity become worthless) if the market value of assets falls

below the promised debt obligations, since equity has limited liability. Conversely, if asset value

exceeds the debt at maturity, shareholders pay off the debt and retain the residual value. This

option-theoretic view implies that the probability of default is determined by three key inputs.

Under Merton’s model, the distance to default (DD) summarizes how far the firm’s asset

value is from the default threshold in units of asset volatility. The firm’s assets are modeled

to follow a stochastic process (e.g. geometric Brownian motion) with drift µ and volatility

σV . In continuous-time form, for a given time horizon T , the distance to default is defined as

the number of standard deviations that the asset value at horizon is above the default point.

Mathematically, if Vt is the current asset value and F is the default point (debt face value due

at T ), Merton’s model implies:

DDt =
ln
(
Vt
F

)
+
(
µ− 1

2σ
2
V

)
T

σV
√
T

This expression is derived from the distribution of VT under log-normal dynamics. It repre-

sents the distance (in standard deviation units) between the expected log-asset value at time T

and the log-default threshold. A larger DD indicates that the firm’s assets would have to drop

by many σV shocks before hitting F , hence a lower default risk, whereas a small or negative DD

indicates proximity to distress.

In practice, I use the methodology implemented by Moody’s KMV/CreditEdge to construct

a one-year horizon distance to default. T is set at T = 1 (one year), and the default point F is

defined based on the firm’s liabilities. Rather than using the total book value of debt as F (as in

8Figures A.3 and A.4 present analogous results when using the alternative risk measures excluding 2020.
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the simplest Merton formulation), Moody’s defines the default point empirically as short-term

liabilities plus one-half of long-term liabilities. This adjustment reflects the observation that

most firms default when asset values fall to roughly that level of obligations (short-term debt

and about half of long-term debt) rather than the full face value of long-term debt (see Banerjee

et al. (2020)).

Given these inputs, a firms’s distance to default on any date t is calculated as:

DDt =
Vt − Ft

Vt σV

which is algebraically equivalent to the one-year version of the Merton DD formula above

under the simplifying assumption of zero drift.9 This ratio measures the buffer (in asset value

terms) between the firm’s assets and its default point, relative to asset volatility. Intuitively, it

informs of how many standard deviation moves in Vt would erase the buffer and lead to default.

10

5.2 The excess bond premia

The EBP is obtained first by regressing the log of option-adjusted credit spreads (the difference

between the return of a given bond j issued by firm i at time t and the risk-free rate at the same

maturity) on the computed firm-specific measure of expected default (distance to default DDi
t)

and a vector of bond-specific characteristics Zi
jt:

11

lnSi
jt = δDDi

t + γ′Zi
jt + εijt (2)

where the zero-mean disturbance εijt represents a “pricing error.” The vector Zi
jt includes dura-

tion, amount outstanding, coupon rate, and an indicator variable that equals one if the bond is

callable; industry (NAICS3) and rating fixed effects are included as controls.

Two minor deviations from the baseline specifications in the literature arise. First, because

the bond issuance dates are unavailable, I cannot include age as a control. Given that age is not

9See Jessen & Lando (2015).
10Figure A.5 plots the evolution of the cross-sectional median and interquartile range of the resulting distance

to default. The data suggest that the distance to default of firms varies over time and over the economic cycle.
11Note that the spreads are computed over a hypothetical Treasury security with the same cash flows as the

underlying corporate bond. It is calculated discounting the cashflow sequence of the bond by continuously-
compounded zero-coupon Treasury yields obtained from the US Treasury yield curve estimated by Gürkaynak
et al. (2007).
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a statistically significant determinant of option-adjusted spreads in Anderson & Cesa-Bianchi

(2024), I assume that omitting it does not materially affect the results. Second, Gilchrist &

Zakraǰsek (2012) augment their baseline by interacting dummy variable indicating whether a

bond is callable with the control variables and including the three yield-curve factors (level,

slope, and curvature). By contrast, and consistent with Anderson & Cesa-Bianchi (2024), I rely

directly on the option-adjusted spread supplied by the data provider instead of constructing

those interaction terms.

Assuming normally distributed disturbances, the predicted level of the spread for bond j

issued by firm i at time t is given by:

Ŝi
jt = exp

[
δ̂DDi

t + γ̂′Zi
jt +

1
2 σ̂

2
]

(3)

where δ̂ and γ̂ are the OLS estimates and σ̂2 is the estimated variance of the disturbance εijt.

This represents the expected spread given the fundamentals.

The EBP is then defined as the difference between the observed spread and the predicted

spread:

EBPi
jt = Si

jt − Ŝi
jt (4)

This difference captures how much the market prices firm-specific risks above and beyond fun-

damentals. The aggregate EBP is computed as the cross-sectional average across bonds.

5.3 Augmenting the bond-level excess bond premia

Using the estimated firm-level measures of cyclical risk Cycli and idiosyncratic risk ISi outlined

in Section 4, I augment the standard EBP regression to capture this additional sources of

variation. The underlying rationale is that investors can ex ante account for these characteristics,

thereby adjusting both the risk compensation they demand and their response to changes in

default risk accordingly. The dependent variable, lnSi
jt is the log of the option adjusted spread

of a bond:

lnSi
jt = β1DDi

t + β2Cycli + β3 (Cycli ×DDi
t) + β4IS

i + β5 (IS
i ×DDi

t) + γ′Zi
jt + εijt (5)

where DDi
t is the firm’s distance-to-default, Cycli measures the cyclicality of firm i’s equity
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returns, ISit is firm i’s idiosyncratic risk, Zi
jt is the vector of bond-level controls (in particular,

I include the log of duration, log of amount outstanding, the log of coupon, and an indicator

variable indicating whether the bond is callable), β2 and β4 capture the sensitivity of spreads

to firm cyclical and idiosyncratic risks, respectively; and β3 and β5 capture the differential

sensitivity of changes in default risk to spreads depending on firms’ risks. εijt is the residual

capturing the unexplained component: the bond-level the EBP. As in Gilchrist & Zakraǰsek

(2012), the regression is estimated by OLS, and the standard errors are double clustered at the

firm and date dimensions, and are therefore robust to both cross-sectional dependence and serial

correlation (see, for example, Cameron et al. (2011)).

Table 1 presents the results. The first column reports the baseline results with the specifi-

cation as in Equation 2. The magnitude of the coefficient for distance to default is similar than

that in Gilchrist & Zakraǰsek (2012), which suggests that a one percent increase in the measure

(that is, a decreased risk of default) is associated with a 9.2% decrease in (option-adjusted) bond

spread. The R-squared is also similar to the 0.649 that is obtained in the baseline specification

in Gilchrist & Zakraǰsek (2012), which shows that default risk and bond-specific controls capture

a large majority of the unconditional variation in credit spreads.

In Column 2, I introduce two additional variables: one measuring the firm’s cyclicality of

risk, and another capturing the interaction between default risk and cyclicality. The positive

coefficient on the former indicates that investors demand higher compensation, on average,

to finance firms whose risk profiles are more cyclical. The significant interaction term with

distance to default suggests that investor sensitivity to changes in default risk intensifies when

firms exhibit greater cyclicality of risk.

In Column 3 I replicate this approach using idiosyncratic risk. The results echo those for

cyclical risks: ceteris paribus, investors demand higher premiums to hold bonds issued by firms

with greater exposure to idiosyncratic shocks. Moreover, the interaction effect indicates that

investor responsiveness to shifts in default risk intensifies when idiosyncratic risk is higher.

In Columns 4 and 5, I allow for a more flexible approach, where different effects for increased

cyclicality of risk (Column 4) and idiosyncratic risk (Column 5) are allowed for each different

industry. For that, I introduce two industry-level interaction terms: Industry fixed effects ×

cyclicality of risk, and Industry fixed effects × idiosyncratic risks, respectively. These terms

capture the idea that firms within certain industries may be penalized differently (e.g., bonds

issued by firms with an average level of cyclicality might be more in demand if their industry
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Table 1: EBP regression models

(1) (2) (3) (4) (5) (6)
Baseline Cyclicality Idios. risk Cyclicality Idios. risk Cyclicality

idiosincr. risk

Cyclicality × DD -0.020*** -0.037*** -0.024**
(0.008) (0.011) (0.012)

Idiosyncratic × DD -0.029*** -0.057*** -0.042***
(0.006) (0.012) (0.012)

Distance to default (DD) -0.092*** -0.094*** -0.095*** -0.096*** -0.097*** -0.097***
(0.011) (0.012) (0.011) (0.012) (0.011) (0.012)

Cyclicality 0.086***
(0.031)

Idiosyncratic risk 0.113***
(0.023)

Duration 0.337*** 0.337*** 0.338*** 0.340*** 0.340*** 0.342***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

Par value -0.047*** -0.047*** -0.047*** -0.046*** -0.047*** -0.044***
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Coupon 0.470*** 0.467*** 0.467*** 0.464*** 0.463*** 0.461***
(0.040) (0.040) (0.040) (0.040) (0.040) (0.040)

Callable -0.040 -0.041 -0.039 -0.045* -0.038 -0.045*
(0.027) (0.027) (0.027) (0.027) (0.027) (0.026)

Observations 2,754,288 2,754,288 2,754,288 2,754,288 2,754,288 2,754,288
Rating FE YES YES YES YES YES YES
Industry FE YES YES YES YES YES YES
Industry FE × Cycl. NO NO NO YES NO YES
Industry FE × Idios. NO NO NO NO YES YES
Adjusted R2 0.686 0.687 0.688 0.692 0.692 0.696
Within R2 0.397 0.399 0.401 0.408 0.408 0.416

Notes: The table presents the results of the estimation specification in Equation 5 and its variants described in the
text. Firm cyclical and idiosyncratic risks are computed as described in Section 4. Standard errors (reported in
parentheses) are clustered two-way, at the firm and time level. Idiosyncratic and cyclical risk variables have been
standardised such that a unit increase is a one-standard deviation increase of the distribution. The frequency of
the data is weekly and the sample period covers from January 2016 to end of 2024. *** p<0.01, ** p<0.05, *
p<0.1
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is highly cyclical). A similar mechanism applies for idiosyncratic risks. The results remain

consistent: both interaction coefficients are strongly significant, reinforcing the idea that the

impact of default risk on spreads is amplified when firm-specific cyclicality and idiosyncratic

risks are high. Finally, Column 6 combines both cyclical and idiosyncratic risks.

Overall, the results indicate that accounting for firm exposure to cyclical and idiosyncratic

risks and, especially, their dynamic interactions with default risk, is crucial in explaining bond

spreads. Including these controls improves explanatory power: across Columns 1 to 6, the within

R² increases from 0.397 to 0.416, signaling that these additional characteristics account for part

of the variation in spreads beyond what is usually controlled for. Omitting these additional

controls could result in mistakenly attributing the unexplained component in Column 1 solely

to shifts in investors’ risk-bearing capacity.

Table A.4 displays the results when cyclical and idiosyncratic risks are computed excluding

2020. Table A.5 replicates the baseline results, now including an extra set of controls: a separate

dummy for each observation in 2020, with the aim of capturing with these the abnormal dynamics

during the COVID-19 period—driven by large market volatility and Fed interventions.12 By

doing so, the unusual cross-sectional average fluctuations in corporate bond spreads are absorbed

in the analysis, shielding the core model estimates from distortion.13

5.4 Comparing the measures of EBP

I define the bond-level EBP as the difference between the observed bond spread and its predicted

value from Equation (5) (computed analogously to Equation 3), isolating the portion of credit

spreads not explained by compensation for default risk, or bond characteristics. In what follows, I

compare the EBP that results from computing the residuals in Column 1 in Table 1 (”Traditional

EBP”) and those from Column 6 in the same table (”New EBP”).

Figure 2a shows the distribution density resulting from the two different computations. Both

Traditional and New EBPs are asymmetrical, with a longer right tail, indicating that extreme

positive values of EBP are more common than extreme negative ones. Both distributions are

centered around a similar level.14 Differences lie in dispersion and tail behavior: the Traditional

12For example, Carriero et al. (2024) add a dummy for each month from March 2020 onward to absorb the
COVID shock.

13These dummies effectively remove pandemic data from influencing residuals, preserving the estimation of
underlying dynamics. The result is a model that treats each cross-section in 2020 as its own outlier mitigating
their impact on parameter estimates.

14Note that, because of the correction resulting from Equation 3, the resulting bond-level EBP can be negative.
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EBP captures more extreme positive premia, driving up the right tail, while the New EBP

smooths or dampens these outliers, producing a more symmetric distribution. The left tail of

the new EBP is wider, as the density declines more gradually than that of the traditional EBP.

The cross-sectional distribution of the excess bond premia can be explained by a number of

reasons, including differences in the liquidity of the bonds (see, for example, Calomiris et al.

(2022), Goldberg & Nozawa (2021) and Galliani et al. (2014)), market segmentation (see Chen

et al. (2014) and Holm-Hadulla & Leombroni (2022)), or pure noise.

Figure 2b shows the time series of the cross-sectional average of the bond-level EBP. Although

both series share a broadly similar trajectory, notable differences emerge in their dynamic be-

havior. Figure 2c illustrates the evolution of the cross-sectional tails. Notably, much of the

difference in cross-sectional heterogeneity arises from the dynamics of the left tail. An interest-

ing exception is the COVID period, during which both series moved similarly in the left tail,

while the divergence became more pronounced in the right tail. This pattern is intuitive: the

new formulation captures the additional compensation investors may demand for riskier firms,

likely concentrated in the right tail, thereby increasing the compensation for risk ex ante and

dampening the rise in EBP for those firms.

Figure 2d shows the dispersion of the cross-sectional EBP (measured as the distance between

the 90th and the 10th percentiles) and Figure 2e the skewness of the EBP (measured as the Kelly

skewness).15 While the difference in dispersion in EBP appears more evident in times where

the average EBP is lower, this could be due to increased compensation for risk that investors

might require for certain firms. In times where the EBP is higher, the difference in dispersion

is dampened.

6 Monetary policy transmission through credit spreads

6.1 Average effects of monetary policy across credit spreads components

I analyse how monetary policy transmits to credit costs by components (compensation for de-

fault risk vs EBP) with a particular interest in understanding whether there are differences in

how monetary policy is transmitted depending on the approach taken to compute the EBP.

Decomposing bond spreads into a fitted value (ν̂j,t) and the residual, that is, the bond-level

Moreover, because of the fixed effects, residuals from Equation 5 are demeaned within each group, and therefore
the center of both distributions can differ slightly.

15Figure A.6 depicts the distribution patterns when comparing the 75th and 25th percentiles instead.
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Figure 2: EBP: distribution, time series, and moments

(a) Distribution density of EBP

(b) EBP: a time series comparison — Average EBP (c) EBP: a time series comparison — Percentiles

(d) EBP: moments — Dispersion (e) EBP: moments — Kelly skewness

Notes: ”Traditional EBP” (”New EBP”) refers to the bond-level EBP resulting from specifications in Column
1 (Column 6) in Table 1. Density distribution of bond-level EBP. The left chart in second row compares the
average bond-level EBP over time. The right chart compares the 90th and 10th percentiles of the cross-sectional
distributions.The left chart in third row depicts the difference between the 90th and the 10th cross-sectional
percentiles. The right chart compares the cross-sectional Kelly skewness.

EBP (ebpj,t), I estimate how each of the components of credit spreads respond to monetary

policy shocks. Although corporate bond spreads are observed at a weekly frequency, the data

ECB Working Paper Series No 3118 18



reflect prices as of Fridays. Since FOMC policy decision and statement release typically occur

on Wednesdays, the measured response captures the effect of the monetary policy shock two

business days after its announcement.

The window used is slightly larger than that of other high-frequency studies in the literature.

As Anderson & Cesa-Bianchi (2024) note, corporate bonds, particularly high-yield bonds, tend

to be less liquid than other assets such as equities and Treasuries. Allowing for a longer time

window enables a more complete absorption of the shock. This approach is more conservative

than that of other studies in the literature, such as Gertler & Karadi (2015) and Gilchrist

et al. (2024), which use a two-week window to analyze how corporate bond spreads respond to

monetary policy surprises.

I start with a specification which aims at estimating the average effect of monetary policy

shocks on each component. To this end, I follow Jarociński & Karadi (2020) in defining US

monetary policy shocks as explained in Section 3. I normalise the size of the shock so that it

corresponds to a 25 basis points increase in the one year Treasury bill. In particular I estimate

the following specification:

yij,t = αi
j + βεmt + eij,t (6)

where: yij,t = [∆csij,t; ∆ν̂ij,t; ∆ebpij,t] for bond j issued by firm i; αj are bond fixed effects, εmt

denotes the monetary policy shock.

Table 2: Credit spreads, expected default, EBP: average effect

(1) (2) (3) (4) (5)
Fitted Fitted EBP EBP

Spread traditional new traditional new

Monetary policy surprise 9.929** 0.754** 0.925** 9.160** 8.461**
(4.518) (0.293) (0.359) (4.379) (4.115)

Observations 2,878,495 2,874,153 2,719,461 2,874,153 2,719,461
R-squared 0.087 0.085 0.080 0.083 0.081
Covid dummies YES YES YES YES YES
Bond FE YES YES YES YES YES

Notes: The table presents the results of the estimation specification in Equation 6. Columns 2 and 4 have as
dependent variable the fitted values and the residual resulting from the specification in Column 1 in Table 1.
Columns 3 and 5 have as dependent variable the fitted values and the residual resulting from the specification in
Column 6 in Table 1. Standard errors (reported in parentheses) are clustered two-way, at the firm and time level.
Covid dummies refer to a separate dummy for every weekly observation from March 2020 until end of 2020. The
frequency of the data is weekly and the sample period covers from January 2016 to end of 2024. Credit spreads
are measured in basis points and the size of the surprise is normalised so that it corresponds to a 25 basis points
increase in the one-year Treasury bill. *** p<0.01, ** p<0.05, * p<0.1
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Table 2 presents the baseline results. Column 1 shows that, on average, a 25 basis point

monetary policy tightening causes an increase in corporate bond spreads of almost 10 basis

points. The remaining columns decompose this effect. Specifically, Columns 2–3 isolate the

portion of the spread change explained by compensation to default risk and bond characteristics,

that is, the fitted values from Equation 2, while Columns 4–5 examine the contribution of changes

in the EBP. Columns 2 and 4 use the ”traditional” computation of the EBP, whereas Columns 3

and 5 apply the ”new” approach introduced in Column 6 of Table 1. Two key findings emerge.

First, under the new decomposition, a larger share of the transmission operates through firm

and bond fundamentals, and a smaller share through investors’ risk-bearing capacity. Second,

even after accounting for these fundamentals and their interaction with firm-level risk of default,

the bulk of the variation in spreads is still attributable to changes in the EBP.

The results in Columns 2 and 4 are consistent with Anderson & Cesa-Bianchi (2024), in that

the coefficient on the EBP is substantially larger than that on the fitted values. A difference in

the magnitude of all coefficients emerges, but this is likely due to the fact that the time window

in my analysis is shorter, i.e. around 2 days after the announcement (compared to 5 in their

study). However, unlike their findings, I do detect a statistically significant effect of monetary

policy shocks on the fitted values for both measures of the EBP.16 While a very large proportion

of the transmission goes through increased excess bond premia, this reflects a lower risk bearing

capacity of the financial sector as monetary policy moves tend to transmit via intermediation

rather than directly pushing up expected default probabilities overnight. This could respond

to firms typically reacting slowly and ratings not changing in lock-step with rate moves, while

market liquidity (see for example Adrian & Shin (2009) and, for the case of quantitative easing,

Boneva et al. (2022)), inventory space and sentiment can react quickly, pushing upwards the

EBP in a short window.

Table A.7 presents the decomposition of credit spreads based on the estimates from Column

5 of Table 1, where only cyclical-risk compensation is incorporated. In contrast, Table A.6

reports the results corresponding to Column 4, which isolates idiosyncratic-risk compensation.

Strikingly, substantial deviations from the traditional EBP framework emerge only when cyclical

risks are considered.

16The authors note that, although they do not find a statistically significant effect, default risk does respond
to monetary policy shocks.
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6.2 Heterogeneous effects of monetary policy across credit spreads compo-

nents

Exploiting the cross-sectional dimension of the dataset, I ask: does monetary policy transmit in

a heterogeneous manner across firms that are assessed as riskier? I consider how the response of

credit spreads and its components vary across groups of firms: first, those that are considered

highly cyclical compared with the rest of firms; and second, those considered highly exposed to

idiosyncratic risks compared with the rest of firms. I estimate a specification with bond and

sector-time fixed effects as follows:

yij,t = αi
j + αi

s,t + β1
(
εmt × 1{Riski}

)
+ β31{Riski}+ eij,t (7)

where, as before, yij,t = [∆csij,t; ∆ν̂ij,t; ∆ebpij,t] for bond j issued by firm i; αj are bond

fixed effects, αi
s,t are sector × time fixed effects, εmt denotes the monetary policy shock, and

1{Riski} = [1{Cycli}; 1{ISi}] are indicator variables for whether the firm issuing the bond is

highly cyclical and exposed highly to idiosyncratic shocks, respectively. I define high cyclicality

as those firms that are above the median across the sample, and I consider a firm to be exposed

highly to idiosyncratic shocks when its measure or risk lies above the median of the sample

distribution. Additionally, I alternatively classify firms as risky when their measure lies above

the median within their sector. I drop observations between March 2020 and December 2020

to avoid contamination from Covid-specific dynamics. As before, I use the two alternative

decompositions of spreads into the fitted values and the EBP.

The baseline results are presented in Table 3a, which examines heterogeneous transmission

to more cyclical firms, and in Table 3b, which focuses on heterogeneity in the transmission of

monetary policy shocks among firms with greater idiosyncratic risk. Columns 2 and 4 decompose

the effect shown in Column 1 into fitted values and EBP using the traditional approach. Columns

3 and 5 present the decomposition using the new approach, derived from Column 6 in Table

1, which incorporates additional fundamental factors in the calculation of the compensation for

risk and the EBP.

In Table 3a, Column 1 shows that following a tightening monetary policy shock, corporate

bond spreads of more cyclical firms increase by approximately 3.8 basis points more than those

of less cyclical firms, suggesting heterogeneous transmission of monetary policy along this di-

mension. Examining the components, the new computation of the EBP indicates that a much

ECB Working Paper Series No 3118 21



Table 3: Credit spreads, expected default, EBP: heterogeneity
(a) High cyclicality

(1) (2) (3) (4) (5)
Fitted Fitted EBP EBP

Spread traditional new traditional new

MP surprise × high cycl. 3.778** 0.297** 0.958*** 3.447** 2.782*
(1.662) (0.145) (0.301) (1.675) (1.629)

Observations 2,464,857 2,461,062 2,461,032 2,461,062 2,461,032
R-squared 0.205 0.407 0.377 0.202 0.201
Time × sector FE YES YES YES YES YES
Bond FE YES YES YES YES YES

(b) High idiosyncratic

(1) (2) (3) (4) (5)
Fitted Fitted EBP EBP

Spread traditional new traditional new

MP surprise × high idiosyncr. 5.871 -0.001 0.859* 5.909 4.930
(3.911) (0.182) (0.450) (3.832) (3.488)

Observations 2,464,857 2,461,062 2,461,032 2,461,062 2,461,032
R-squared 0.205 0.407 0.377 0.202 0.201
Time × sector FE YES YES YES YES YES
Bond FE YES YES YES YES YES

(c) Credit spreads, expected default EBP: heterogeneity

(1) (2) (3) (4) (5)
Fitted Fitted EBP EBP

Spread traditional new traditional new

MP surprise × Q4 cycl. 0.405 -0.073 0.810* 0.583 0.625
(2.537) (0.187) (0.427) (2.471) (2.577)

MP surprise × Q1 cycl. -4.165* -0.384** -0.778*** -3.591* -1.908
(2.272) (0.180) (0.234) (2.168) (1.708)

Observations 2,605,560 2,601,511 2,461,032 2,601,511 2,461,032
R-squared 0.205 0.396 0.377 0.202 0.201
Time × sector FE YES YES YES YES YES
Bond FE YES YES YES YES YES

Notes: The table presents the results of the estimation specification in Equation 7. Columns 2 and 4 have as
dependent variable the fitted values and the residual resulting from the specification in Column 1 in Table 1.
Columns 3 and 5 have as dependent variable the fitted values and the residual resulting from the specification in
Column 6 in Table 1. Standard errors (reported in parentheses) are clustered two-way, at the firm and time level.
Data between March 2020 and December 2020 are excluded. The frequency of the data is weekly and the sample
period covers from January 2016 to end of 2024. Credit spreads are measured in basis points and the size of
the surprise is normalised so that it corresponds to a 25-basis-points increase in the one-year Treasury bill. High
cyclicality and idiosyncratic risks are indicator variables equal to one for those firms that are above the median
across the sample distribution. *** p<0.01, ** p<0.05, * p<0.1
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larger share of the pass-through operates through compensation for default risk than with the

traditional computation. Specifically, around one-fourth of the increase in spreads is driven by

higher compensation for default risk, compared with only about 8% when using the traditional

EBP calculation.

In contrast, Table 3b shows that, while spreads of the firms with higher idiosyncratic risk tend

to increase by more when hit by a tightening shock, the difference is not statistically significant.

Intuitively, a monetary policy shock, being an aggregate disturbance, does not necessarily trigger

a sharper increase in financing costs for firms more exposed to idiosyncratic risk. This could

be both because investors already demand higher compensation for bearing those risks and

because increases in default risk for such firms may be more closely tied to firm-specific rather

than aggregate factors. However, the new decomposition of the spreads suggests that a larger

proportion of this increase is explained by increased compensation for default risks.17

Table 3c further investigates heterogeneities in monetary policy transmission by examining

whether bonds issued by firms in the tails of the distributions of cyclicality of risk experience

differential transmission of monetary policy shocks. To this end, I incorporate indicator variables

identifying whether the issuing firm falls into the top or bottom quartile of each distribution,

along with interaction terms between these indicators and the monetary policy shock. The table

shows that firms in the lowest quartile (i.e., the left tail of the cyclical risk distribution) benefit

from a smaller pass-through of monetary policy shocks to corporate bond spreads. An opposite

effect, albeit less strongly significant, is observed for firms in the highest quartile compared with

the rest. As in earlier results, the new EBP decomposition suggests that a greater proportion of

the spread increase operates through compensation for default risks than under the traditional

EBP calculation.

Table A.10, meanwhile, confirms the weakness of heterogeneous monetary policy transmission

to firms based on their exposure to idiosyncratic risk. This is consistent with earlier findings,

and intuitive given the aggregate nature of monetary policy shocks. However, firms in the

highest quartile of firm idiosyncratic risks experience larger compensation for default risks in

the aftermath of a tightening shock.

17Tables A.8 and Table A.9 replicate the analysis with a within-industry classification of high cyclical and
idiosyncratic risks. In particular, the results based on an alternative classification, where firms are defined as
highly cyclical (exposed to high idiosyncratic risks) if they are above the median within their industry. The
results suggest that the baseline classification offers stronger heterogeneous effects as in both the heterogeneous
effect is much weaker when the risk profiles are defined within each industry.
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7 Conclusions

In this paper, I investigate whether nonlinearities in compensation for default risk should be

explicitly included when calculating the EBP. I demonstrate that firm-level idiosyncratic and

cyclical risks are significant determinants of credit spreads, and I adapt the EBP computation to

capture these effects. When these risk-based adjustments are incorporated, a larger share of the

impact of a monetary policy shock on credit spreads is transmitted via increased compensation

for credit risk.

I then analyze whether monetary policy shocks transmit heterogeneously depending on firm

risk profiles, and I show that around one quarter of the additional effect of the shock on more

cyclical firms is driven by compensation for default risks. In contrast, firms with high idiosyn-

cratic risk do not exhibit any differential response: monetary shocks affect their bond spreads

similarly to other firms. Overall, these findings highlight the importance of accounting for

adjusted default-risk compensation for firm-level idiosyncratic and cyclical risks.
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A Supplemental appendix

Figure A.1: Monetary policy shocks
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Notes: The figure plots the monetary policy shocks that drive interest rate surprises. The shocks are computed
following the methodology of Jarociński & Karadi (2020) and cover 73 FOMC announcements from January 2016
until December 2024.

Table A.1: Summary Statistics of Monetary Policy Surprises

Group Mean Median Std. Dev. Min Max N. obs.

MP surprise -0.002 -0.003 0.041 -0.138 0.109 73
Contractionary MP surprise 0.030 0.017 0.032 0.000 0.109 30
Expansionary MP surprise -0.026 -0.012 0.029 -0.138 -0.001 42

Note: This table reports summary statistics for pure monetary policy shocks following the methodology of
Jarociński & Karadi (2020) covering 73 FOMC announcements from January 2016 until December 2024. ”Con-
tractionary” and ”Expansionary” shocks are defined based on whether the shock value is greater or less than zero,
respectively.
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Table A.2: Summary Statistics of Firm-Level Cyclicality

Statistic Cyclicality Cyclicality, excl. 2020

Mean 1.343 1.236
Std. Dev. .576 .538
Skewness .551 .526
Kurtosis 3.388 3.274
P1 .199 .15
P25 .945 .843
Median 1.307 1.207
P75 1.681 1.548
P99 3.112 2.819
N 1361 1361

Table A.3: Summary Statistics of Firm-Level idiosyncratic risk

Statistic Idiosyncratic risk Idiosyncratic risk, excl. 2020

Mean 227.191 229.745
Std. Dev. 306.643 308.824
Skewness 3.403 3.361
Kurtosis 16.806 16.449
P1 22.755 22.755
P25 62.478 62.626
Median 125.523 126.472
P75 250.344 255.359
P99 1954.998 1957.702
N 1361 1361
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Table A.4: EBP with Covid dummies

(1) (2) (3) (4)
Cyclicality Idiosyncr. risk Cyclicality Idiosyncr. risk

VARIABLES

Cyclicality (ex. 2020) 0.078** 0.054*
(0.032) (0.032)

Cyclicality (ex. 2020) × DD -0.018** -0.011
(0.008) (0.008)

Idiosyncratic (ex. 2020) × DD -0.030*** -0.026***
(0.006) (0.006)

Idiosyncratic (ex. 2020) 0.114*** 0.099***
(0.023) (0.023)

Distance to default (DD) -0.094*** -0.095*** -0.092*** -0.094***
(0.012) (0.011) (0.012) (0.011)

Duration 0.337*** 0.338*** 0.336*** 0.337***
(0.015) (0.016) (0.016) (0.016)

Par value -0.047*** -0.047*** -0.047*** -0.047***
(0.011) (0.011) (0.011) (0.011)

Coupon 0.467*** 0.467*** 0.466*** 0.465***
(0.040) (0.040) (0.039) (0.040)

Callable -0.041 -0.039 -0.042 -0.041
(0.027) (0.027) (0.027) (0.027)

Observations 2,754,288 2,754,288 2,754,288 2,754,288
Rating FE YES YES YES YES
Industry FE YES YES YES YES
Covid dummies NO NO YES YES
Adjusted R2 0.687 0.688 0.711 0.712
Within R2 0.399 0.401 0.444 0.446

Notes: The table presents the results of the estimation specification in Equation 5 and its variants described in
the text. Firm cyclical and idiosyncratic risks are computed as described in Section 4. The regression includes one
separate dummy for every observation in 2020. Standard errors (reported in parentheses) are clustered two-way,
at the firm and time level. Idiosyncratic and cyclical risk variables have been standardised such that a unit
increase is a one-standard deviation increase of the distribution. The frequency of the data is weekly and the
sample period covers from January 2016 to end of 2024. *** p<0.01, ** p<0.05, * p<0.1

ECB Working Paper Series No 3118 31



Table A.5: EBP with Covid dummies

(1) (2) (3) (4) (5) (6)
Baseline Cyclicality Idios. risk Cyclicality Idios. risk Cyclicality

VARIABLES (2) (2) idiosincr. risk

Cyclicality × DD -0.013* -0.027** -0.015
(0.008) (0.011) (0.012)

Idiosyncratic × DD -0.026*** -0.047*** -0.036***
(0.006) (0.014) (0.014)

Distance to default (DD) -0.091*** -0.092*** -0.094*** -0.094*** -0.094*** -0.093***
(0.011) (0.012) (0.011) (0.012) (0.012) (0.012)

Cyclicality 0.061*
(0.031)

Idiosyncratic risk 0.098***
(0.023)

Duration 0.336*** 0.336*** 0.337*** 0.339*** 0.339*** 0.341***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Par value -0.047*** -0.047*** -0.047*** -0.046*** -0.047*** -0.043***
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Coupon 0.468*** 0.466*** 0.465*** 0.463*** 0.462*** 0.460***
(0.040) (0.040) (0.040) (0.040) (0.040) (0.039)

Callable -0.042 -0.043 -0.041 -0.046* -0.039 -0.047*
(0.027) (0.027) (0.027) (0.026) (0.027) (0.026)

Observations 2,754,288 2,754,288 2,754,288 2,754,288 2,754,288 2,754,288
Rating FE YES YES YES YES YES YES
Industry FE YES YES YES YES YES YES
Industry FE × Cycl. NO NO NO YES NO YES
Industry FE × Idios. NO NO NO NO YES YES
Covid dummies YES YES YES YES YES YES
Adjusted R2 0.710 0.711 0.712 0.714 0.715 0.719
Within R2 0.444 0.444 0.446 0.452 0.452 0.460

Notes: The table presents the results of the estimation specification in Equation 5 and its variants described in
the text. Firm cyclical and idiosyncratic risks are computed as described in Section 4. The regression includes one
separate dummy for every observation in 2020. Standard errors (reported in parentheses) are clustered two-way,
at the firm and time level. Idiosyncratic and cyclical risk variables have been standardised such that a unit
increase is a one-standard deviation increase of the distribution. The frequency of the data is weekly and the
sample period covers from January 2016 to end of 2024. *** p<0.01, ** p<0.05, * p<0.1

Table A.6: Credit spreads, expected default, EBP: average effect

(1) (2) (3)
Fitted EBP

VARIABLES Spread Col. 4 Col. 4

Monetary policy surprise 9.929** 0.926*** 8.460**
(4.518) (0.352) (4.133)

Observations 2,878,495 2,719,461 2,719,461
R-squared 0.087 0.084 0.083
Covid dummies YES YES YES
Bond FE YES YES YES

Notes: The table presents the results of the estimation specification in Equation 6. Columns 2 and 3 have as
dependent variable the fitted values and the residual resulting from the specification in Column 6 in Table 1.
Standard errors (reported in parentheses) are clustered two-way, at the firm and time level. Covid dummies refer
to a separate dummy for every weekly observation from March 2020 until end of 2020. The frequency of the data
is weekly and the sample period covers from January 2016 to end of 2024. Credit spreads are measured in basis
points and the size of the surprise is normalised so that it corresponds to a 25 basis points increase in the one-year
Treasury bill. *** p<0.01, ** p<0.05, * p<0.1
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Table A.7: Credit spreads, expected default, EBP: average effect

(1) (2) (3)
Fitted EBP

VARIABLES Spread Col.5 Col. 5

Monetary policy surprise 9.929** 0.764** 8.632**
(4.518) (0.310) (4.144)

Observations 2,878,495 2,719,461 2,719,461
R-squared 0.087 0.080 0.083
Covid dummies YES YES YES
Bond FE YES YES YES

Notes: The table presents the results of the estimation specification in Equation 6. Columns 2 and 3 have as
dependent variable the fitted values and the residual resulting from the specification in Column 5 in Table 1.
Standard errors (reported in parentheses) are clustered two-way, at the firm and time level. Covid dummies refer
to a separate dummy for every weekly observation from March 2020 until end of 2020. The frequency of the data
is weekly and the sample period covers from January 2016 to end of 2024. Credit spreads are measured in basis
points and the size of the surprise is normalised so that it corresponds to a 25 basis points increase in the one-year
Treasury bill. *** p<0.01, ** p<0.05, * p<0.1

Table A.8: Credit spreads, expected default, EBP: heterogeneity

(1) (2) (3) (4) (5)
Fitted Fitted EBP EBP

VARIABLES Spread traditional new traditional new

MP surprise × high cycl. (within) 3.058 0.132 0.701* 2.843 1.027
(2.407) (0.230) (0.409) (2.303) (2.121)

Observations 2,605,560 2,601,511 2,461,032 2,601,511 2,461,032
R-squared 0.205 0.396 0.377 0.201 0.201
Time × sector FE YES YES YES YES YES
Bond FE YES YES YES YES YES

Notes: The table presents the results of the estimation specification in Equation 7. Columns 2 and 4 have as
dependent variable the fitted values and the residual resulting from the specification in Column 1 in Table 1.
Columns 3 and 5 have as dependent variable the fitted values and the residual resulting from the specification in
Column 6 in Table 1. Standard errors (reported in parentheses) are clustered two-way, at the firm and time level.
Data between March 2020 and December 2020 are excluded. The frequency of the data is weekly and the sample
period covers from January 2016 to end of 2024. Credit spreads are measured in basis points and the size of the
surprise is normalised so that it corresponds to a 25 basis points increase in the one-year Treasury bill. High
cyclicality and idiosyncratic risks are indicator variables equal to one for those firms that are above the median
across the sample distribution. *** p<0.01, ** p<0.05, * p<0.1
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Table A.9: Credit spreads, expected default, EBP: heterogeneity

(1) (2) (3) (4) (5)
Fitted Fitted EBP EBP

VARIABLES Spread traditional new traditional new

MP surprise × high idiosyncr. (within) 4.025 0.115 0.728 3.883 2.079
(3.350) (0.236) (0.450) (3.260) (2.965)

Observations 2,605,560 2,601,511 2,461,032 2,601,511 2,461,032
R-squared 0.205 0.396 0.377 0.202 0.201
Time × sector FE YES YES YES YES YES
Bond FE YES YES YES YES YES

Notes: The table presents the results of the estimation specification in Equation 7. Columns 2 and 4 have as
dependent variable the fitted values and the residual resulting from the specification in Column 1 in Table 1.
Columns 3 and 5 have as dependent variable the fitted values and the residual resulting from the specification in
Column 6 in Table 1. Standard errors (reported in parentheses) are clustered two-way, at the firm and time level.
Data between March 2020 and December 2020 are excluded. The frequency of the data is weekly and the sample
period covers from January 2016 to end of 2024. Credit spreads are measured in basis points and the size of the
surprise is normalised so that it corresponds to a 25 basis points increase in the one-year Treasury bill. High
cyclicality and idiosyncratic risks are indicator variables equal to one for those firms that are above the median
across the sample distribution. *** p<0.01, ** p<0.05, * p<0.1

Table A.10: Credit spreads, expected default, EBP: heterogeneity

(1) (2) (3) (4) (5)
Fitted Fitted EBP EBP

VARIABLES Spread traditional new traditional new

MP surprise × Q4 idiosyncr. 0.368 -0.082 0.906** 0.411 0.281
(2.430) (0.087) (0.459) (2.317) (2.463)

MP surprise × Q1 idiosyncr. -4.706 -0.056 -0.461 -4.619 -3.012
(3.808) (0.248) (0.351) (3.678) (3.477)

Observations 2,605,560 2,601,511 2,461,032 2,601,511 2,461,032
R-squared 0.205 0.396 0.377 0.202 0.201
Time × sector FE YES YES YES YES YES
Bond FE YES YES YES YES YES

Notes: The table presents the results of the estimation specification in Equation 7. Columns 2 and 4 have as
dependent variable the fitted values and the residual resulting from the specification in Column 1 in Table 1.
Columns 3 and 5 have as dependent variable the fitted values and the residual resulting from the specification in
Column 6 in Table 1. Standard errors (reported in parentheses) are clustered two-way, at the firm and time level.
Data between March 2020 and December 2020 are excluded. The frequency of the data is weekly and the sample
period covers from January 2016 to end of 2024. Credit spreads are measured in basis points and the size of the
surprise is normalised so that it corresponds to a 25 basis points increase in the one-year Treasury bill. High
cyclicality and idiosyncratic risks are indicator variables equal to one for those firms that are above the median
across the sample distribution. *** p<0.01, ** p<0.05, * p<0.1

ECB Working Paper Series No 3118 34



Figure A.2: Density of firms’ cyclical and idiosyncratic risks
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Notes: The figure displays the density distribution of the computed firm-level cyclical (left chart) and idiosyn-
cratic (right chart) risks across listed US firms and following the methodology presented in Section 4. The data
used for the computation is monthly and spans from 2000 to end of 2024. ”Excess returns” refers to the results
obtained when cleaning equity returns from the risk-free rate.

Figure A.3: Cyclicality of risk (excl. 2020) and spreads
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Notes: The figure presents a binned scatterplot where cyclicality and ln(OAS) are residualised with date and
industry fixed effects.
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Figure A.4: Idiosyncratic risk (excl. 2020) and spreads
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Notes: The figure presents a binned scatterplot where idiosyncratic risk and ln(OAS) are residualised with date
and industry fixed effects.

Figure A.5: The cross section evolution of the distance to default

Notes: The figure plots the weekly-distance to default from January 2016 to December 2024. The solid line
depicts the cross-sectional median of the distance to default; while the dashed lines show the 25th and 75th
cross-sectional percentiles. For more details on construction see main text.
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Figure A.6: EBP: distribution

Notes: ”Traditional EBP” (”New EBP”) refers to the bond-level EBP resulting from specifications in Column
1 (Column 6) in Table 1. The left chart compares the cross-sectional difference between the 75th and 25th
percentiles. The right chart compares the 75th and 25th percentiles of the cross-sectional distributions.
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