The Macroeconomic Implications of the Gen-AI economy^a

Al-nomics: Understanding the Macroeconomics of the Artificial Intelligence Era

Pablo A Guerrón Quintana¹ and Tomoaki Mikami¹ and Jaromir Nosal¹ October 24, 2024

¹Boston College

^aDisclosure: This presentation was done with Claude.ai's help.

Motivation

Nvidia CEO Jensen Huang Said, "This Is the Beginning of a New World" Thanks to Artificial Intelligence (AI). 1 Stock to Buy If He's Riaht

By Danny Vena - Apr 16, 2024 at 3:09PM

KEY POINTS

- P The chinmaker-in-chief thinks AI will change the world as we know it.
- Ø Generative AI can streamline time-consuming tasks
- Microsoft has been working behind the scenes to develop digital helpers.
- A Motley Fool Issues Rare "All In" Buy Alert

Sachs

Published on O5 APR 2023

FINANCIAL TIMES

mvFT

Advertising + Add to myFT

AI advertising start-up valued at \$4bn after fundraising

The Brandtech Group will use funds to disrupt industry with machine-generated content and artificial intelligence

CIO JOURNAL

=

At Moderna, OpenAI's GPTs Are **Changing Almost Everything**

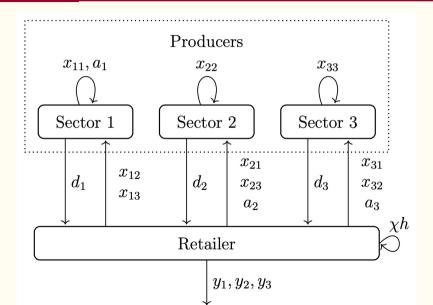
'People literally talk about how AI is going to cure diseases someday. and I think this is a very meaningful first step,' said OpenAI CEO Sam +14%

PwC research shows global GDP could be up to 14% higher in 2030 as a result of AI-the equivalent of an additional \$15.7 trillion - making it the biggest commercial opportunity in today's

- Artificial Intelligence (AI) is a potentially transformative innovation of our time, permeating various facets of our daily lives.
- It is crucial to understand the implications of AI on the macroeconomy.
- Questions surrounding AI
 - What is the contribution of the AI revolution to the overall economy?

Some industry estimates put the contribution at between 7% and 14% over next decade.

- How does it affect capital and labor across sectors?
- How does it compare to previous Industrial Revolutions?


 $\circ~$ We need a **quantitative macro model** to address these and other questions.

- This paper proposes a quantitative multi-sector model to capture the special role of Gen-AI.
 - Al sector improves customer management and retention in all sectors.
 - It helps to overcome frictions of customer base buildup marketing/advertising.
- The Gen–Al component of the service sector is modeled in a customer capital search framework, which makes costumer base valuable.
- Model is calibrated to match size of AI service sector and Input-Output structure of U.S.

- Goldman Sachs estimates a potential increase by 7 p.p. in GDP next decade.
- Productivity in AI sector must increase by around 12% to deliver a 7 p.p. increase in GDP in a 10-year horizon.
- Large permanent reallocation of labor from AI services (-3%) to other sectors with no impact on aggregate labor (0.02%).
- Permanent increase in aggregate capital (7%) driven by growth in all sectors.
- Significant spillovers of productivity gain from AI sector to rest of economy.
- Search frictions drives about half of the response, I-O explains the rest.

Model

Model Overview

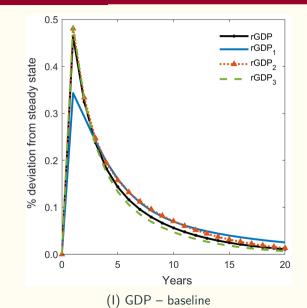
6

Model Overview

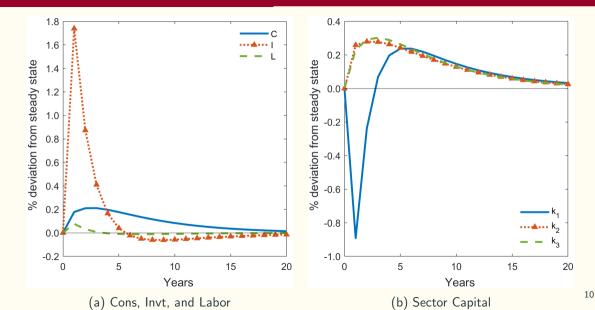
- Three sectors based on AI exposure (Goldman Sachs report):
 - Type I: services highly susceptible to AI (e.g., data processing, internet publishing, management) 🕛 tables
 - Type II: other services with potential AI impact (e.g., real estate, education)
 - Type III: the rest (e.g., manufacturing, construction)
- Constant returns to scale production function for each sector.
- To sell goods, producers must match retailers

Higher marketing capital increases likelihood of meeting a retailer

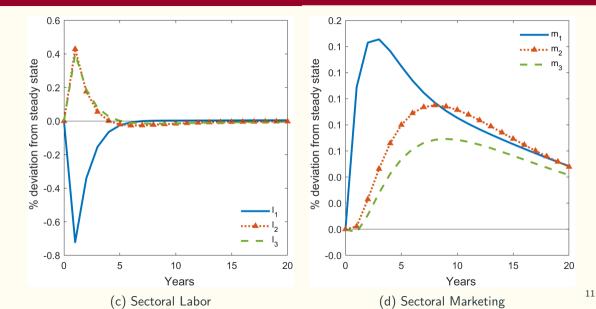
- Households consume, invest, supply labor, and purchase sectoral goods
- In quantitative section, we allow Input-Output structure.


Calibration

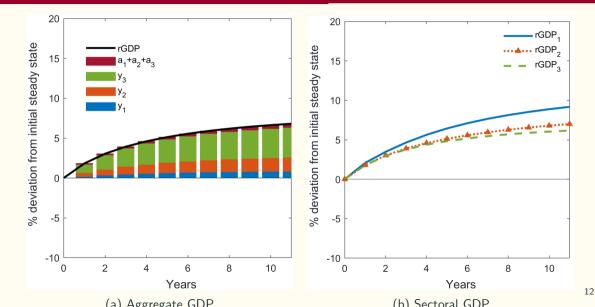
- A period in our calibration of the model is a year.
- We use industry information at the 3-digit level and group industries in 3 sectors. •• tables
- Weights in demand aggregator come from NIPA and PCE Bridge tables.
- Factor shares are computed using the "use tables" of the IO accounts from BEA.
- We use BEA-BLS Integrated Industry-level Production Accounts to compute Solow residuals in each sector.
- Sectoral PPI is constructed using BEA's supply tables.


Results

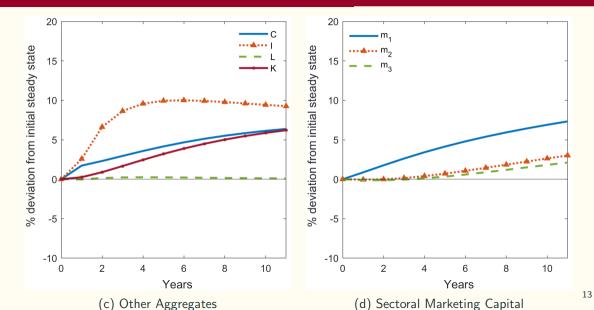
A transitory increase in productivity in sector I – AI shock


A transitory AI shock $-z_1$

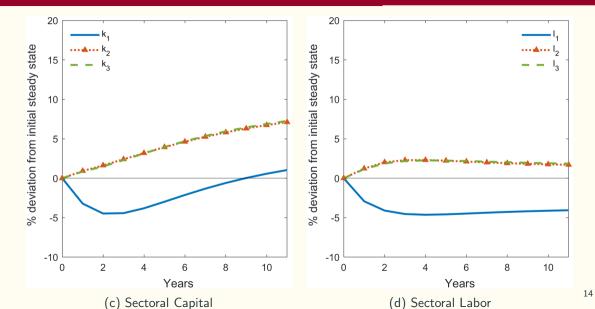
A transitory AI shock $-z_1$



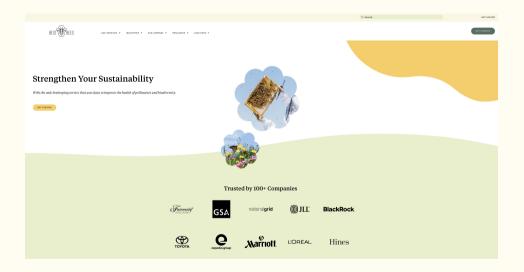
A transitory AI shock $-z_1$



A Goldman Sachs' shock


A Goldman Sachs' scenario – 7 p.p. GDP increase in a decade

A Goldman Sachs' scenario – 7 p.p. GDP increase in a decade



A Goldman Sachs' scenario – 7 p.p. GDP increase in a decade

- Developed a multi-sector model to study the impact of AI
- Key features:
 - Three sectors with different exposure to AI
 - Marketing capital facilitates matching between producers and retailers
 - Households consume composite good aggregated from sectoral goods
- Model provides framework to analyze AI's differential impact across sectors
- Can be calibrated and simulated to generate quantitative predictions

Searching for customers

Appendix

More Introduction Slides

• A transitory improvement in productivity in the service sector leads to:

- Cheaper to use AI good for marketing. Firms wants to attract more clients and sell more.
- Shift away from employment and capital in Al sector; not your typical productivity shock.
- Firms II and III produce more by increasing capital and labor
- More retail entrants matching mostly Type I producer.
- Strong spillovers resulting in similar p.p. gains across all sector and aggregate economy.
- Even though AI sector is only 10% of overall economy.
- Modest impact on aggregate employment

Table 7: Type I Classification

NAICS 3 digit	NAICS code (IO table)	Industry Description	Туре
512	512	Motion picture and sound recording industries	1
515,517	513	Broadcasting and telecommunications	1
518,519	514	Data processing, internet publishing, and other information services	1
5412-5414,5416-5419	5412OP	Miscellaneous professional, scientific, and technical services	1
55	55	Management of companies and enterprises	1
561	561	Administrative and support services	1

Table 8: Type II Classification

NAICS 3 digit	NAICS code (IO table)	Industry Description	Туре
44,45	42	Wholesale trade	2
481	481	Air transportation	2
521,522	521CI	Federal reserve banks, credit intermediation, and related activities	2
523	523	Securities, commodity contracts, and other financial investments and related activities	2
524	524	Insurance carriers and related activities	2
525	525	Funds, trusts, and other financial vehicles	2
531	HS	Real estate	2
531	ORE	Real estate	2
532,533	532RL	Rental and leasing services and lessors of nonfinancial and intangible assets	2
5411	5411	Legal services	2

Model Equilibrium

Equilibrium

- Symmetric equilibrium: drop subscript *i*
- Market clearing for sectoral goods *j*:

$$\int y_{jt} + \sum_{m} x_{mjt} + \sum_{m} a_{mt} + \chi h_t \quad (j=1)$$
(1)

$$z_{jt}F(k_{jt}, l_{jt}, \{x_{jmt}\}) = \begin{cases} m & m \\ y_{jt} + \sum_{m} x_{mjt} & (j \neq 1) \end{cases}$$
(2)

$$d_{jt} = \begin{cases} y_{jt} + \sum_{m \neq j} x_{mjt} + \sum_{m \neq j} a_{mt} + \chi h_t & (j = 1) \\ y_{it} + \sum_{m \neq j} x_{mit} & (i \neq 1) \end{cases}$$
(3)

$$\begin{pmatrix} y_{jt} + \sum_{m \neq j} x_{mjt} & (j \neq 1) \end{pmatrix}$$
(4)

• Labor and capital market clearing:

$$\sum_{j} \ell_{jt} = \ell_t$$

$$\sum_{j} k_{jt} = k_{t-1}$$
20

Table 9: Independently calibrated parameters (** backcalib

Parameter	Symbol	Value
Discount factor	eta	0.9
Relative Risk Aversion	σ	1.0
Inverse of Frisch labor supply elasticity	η	2.0
Elasticity of Substitution	γ	1.1
Bargaining power	heta	0.5
Physical Capital Depreciation	δ	0.1
Customer list destruction rate	δ_H	1.0

Table 10: Jointly calibrated parameters 1 Packcalib

Parameter	Symbol	Value	
Parameter of labor disutility	ξ	0.6781	$\ell_{ss} = 1$
Search cost	X	0.1150	10% gross wholesale markup

Table 11: Jointly calibrated parameters 2 backcalib

Parameter	Symbol	Value	Target		Model	
Physical Capital Adjustment cost	ϕ	0.0000	$\sigma_i/\sigma_{ m GDP}$	2.808	$\sigma_i/\sigma_{ m rGDP}$	2.714
Marketing Capital Adjustment cost	ψ	20.9612	$\sigma_{ m PPI}/\sigma_{ m PCE}$	2.698	$\sigma_{m{q}_1}/\sigma_{m{p}_1}$	2.699
Persistence of productivity in Sector 1	$ ho_1$	0.5432	KLEMS $ ho_1$	0.535	rGDP_1/F_1	0.533
Persistence of productivity in Sector 2	ρ_2	0.5635	KLEMS $ ho_2$	0.574	rGDP_2/F_2	0.573
Persistence of productivity in Sector 3	$ ho_3$	0.6731	KLEMS $ ho_3$	0.694	rGDP_3/F_3	0.683
Standard deviation of productivity in Sector 1	$100\sigma_1$	1.5487	KLEMS $100\sigma_1$	1.252	rGDP_1/F_1	1.253
Standard deviation of productivity in Sector 2	$100\sigma_2$	0.8602	KLEMS $100\sigma_2$	0.810	rGDP_2/F_2	0.810
Standard deviation of productivity in Sector 3	$100\sigma_3$	0.7090	KLEMS $100\sigma_3$	0.670	rGDP_3/F_3	0.669