David F. Hendry
- 25 February 2010
- WORKING PAPER SERIES - No. 1155Details
- Abstract
- To forecast an aggregate, we propose adding disaggregate variables, instead of combining forecasts of those disaggregates or forecasting by a univariate aggregate model. New analytical results show the effects of changing coefficients, mis-specification, estimation uncertainty and mis-measurement error. Forecast origin shifts in parameters affect absolute, but not relative, forecast accuracies; mis-specification and estimation uncertainty induce forecast-error differences, which variable-selection procedures or dimension reductions can mitigate. In Monte Carlo simulations, different stochastic structures and interdependencies between disaggregates imply that including disaggregate information in the aggregate model improves forecast accuracy. Our theoretical predictions and simulations are corroborated when forecasting aggregate US inflation pre- and post 1984 using disaggregate sectoral data.
- JEL Code
- C51 : Mathematical and Quantitative Methods→Econometric Modeling→Model Construction and Estimation
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
- 22 February 2006
- WORKING PAPER SERIES - No. 589Details
- Abstract
- We suggest an alternative use of disaggregate information to forecast the aggregate variable of interest, that is to include disaggregate information or disaggregate variables in the aggregate model as opposed to first forecasting the disaggregate variables separately and then aggregating those forecasts or, alternatively, using only lagged aggregate information in forecasting the aggregate. We show theoretically that the first method of forecasting the aggregate should outperform the alternative methods in population. We investigate whether this theoretical prediction can explain our empirical findings and analyse why forecasting the aggregate using information on its disaggregate components improves forecast accuracy of the aggregate forecast of euro area and US inflation in some situations, but not in others.
- JEL Code
- C51 : Mathematical and Quantitative Methods→Econometric Modeling→Model Construction and Estimation
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
- 1 November 2001
- WORKING PAPER SERIES - No. 82Details
- Abstract
- This paper describes some recent advances and contributions to our understanding of economic forecasting. The framework we develop helps explain the findings of forecasting competitions and the prevalence of forecast failure. It constitutes a general theoretical background against which recent results can be judged. We compare this framework to a previous formulation, which was silent on the very issues of most concern to the forecaster. We describe a number of aspects which it illuminates, and draw out the implications for model selection. Finally, we discuss the areas where research remains needed to clarify empirical findings which lack theoretical explanations.
- JEL Code
- C32 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Time-Series Models, Dynamic Quantile Regressions, Dynamic Treatment Effect Models, Diffusion Processes