Opțiuni de căutare
Pagina inițială Media Materiale explicative Studii și publicații Statistici Politică monetară Euro Plăți și piețe Cariere
Sugestii
Sortează în funcție de
Nu este disponibil în limba română

Martin Groiss

17 June 2024
WORKING PAPER SERIES - No. 2946
Details
Abstract
We examine the extent to which environmental regulation affects innovation and which policy types provide the strongest incentives to innovate. Using a local projection framework, we estimate the regulatory impact on patenting activity over a five-year horizon. As a proxy for environmental policy exposure, we estimate firm-level greenhouse gas emissions using a machine learning algorithm. At the country-level, policy tightening is largely associated with no statistically significant change in environmental technology innovation. At the firm-level, however, environmental policy tightening leads to higher innovation activity in technologies mitigating climate change, while the effect on innovation in other technologies is muted. This suggests that environmental regulation does not lead to a crowding-out of non-clean innovations. The policy type matters, as increasing the stringency of technology support policies and non-market based policies leads to increases in clean technology patenting, while we do not find a statistically significant impact of market-based policies.
JEL Code
O44 : Economic Development, Technological Change, and Growth→Economic Growth and Aggregate Productivity→Environment and Growth
Q52 : Agricultural and Natural Resource Economics, Environmental and Ecological Economics→Environmental Economics→Pollution Control Adoption Costs, Distributional Effects, Employment Effects
Q58 : Agricultural and Natural Resource Economics, Environmental and Ecological Economics→Environmental Economics→Government Policy
3 November 2023
WORKING PAPER SERIES - No. 2863
Details
Abstract
Labour shortages have become prevalent across advanced economies. Yet, little is known about which firms are more likely to face them and the impact they have on the labour market. We create a firm-level data set spanning 28 EU countries, 283 regions and 18 sectors, contributing to close this gap. We find that structural factors play the dominant role. Firms in regions with limited labour supply as well as innovative and fast-growing firms are particularly prone to face labour shortages. Moreover, shortages tend to aggravate at business cycle peaks. In a second stage, we empirically determine the impact of labour shortages on wages and hiring. Firms with higher shortages pay a wage growth premium to keep and attract workers, increasingly so if they face excess demand. At the same time, those are the firms that hire less than the average.
JEL Code
C36 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Instrumental Variables (IV) Estimation
E24 : Macroeconomics and Monetary Economics→Consumption, Saving, Production, Investment, Labor Markets, and Informal Economy→Employment, Unemployment, Wages, Intergenerational Income Distribution, Aggregate Human Capital
J20 : Labor and Demographic Economics→Demand and Supply of Labor→General
J23 : Labor and Demographic Economics→Demand and Supply of Labor→Labor Demand
J30 : Labor and Demographic Economics→Wages, Compensation, and Labor Costs→General
23 May 2023
WORKING PAPER SERIES - No. 2820
Details
Abstract
This paper analyses the impact of changes in environmental regulations on productivity growth at country- and firm-level. We exploit several data sources and the environmen-tal policy stringency index, to evaluate the Porter hypothesis, according to which firms’ productivity can benefit from more stringent environmental policies. By using panel local projections, we estimate the regulatory impact over a five-year horizon. The identification of causal impacts of regulatory changes is achieved by the estimation of firms’ CO2 emissions via a machine learning algorithm. At country- and firm-level, policy tightening affects high-polluters’ productivity negatively and stronger than their less-polluting peers. However, among high-polluting firms, large ones experience positive total factor productivity growth due to easier access to finance and greater innovativeness. Hence, we do not find support for the Porter hypothesis in general. However for technology support policies and firms with the required resources, policy tightening can enhance productivity.
JEL Code
O44 : Economic Development, Technological Change, and Growth→Economic Growth and Aggregate Productivity→Environment and Growth
Q52 : Agricultural and Natural Resource Economics, Environmental and Ecological Economics→Environmental Economics→Pollution Control Adoption Costs, Distributional Effects, Employment Effects
Q58 : Agricultural and Natural Resource Economics, Environmental and Ecological Economics→Environmental Economics→Government Policy