Options de recherche
Page d’accueil Médias Notes explicatives Recherche et publications Statistiques Politique monétaire L’euro Paiements et marchés Carrières
Suggestions
Trier par
Pas disponible en français

Markus Holopainen

2 May 2016
WORKING PAPER SERIES - No. 1900
Details
Abstract
This paper presents first steps toward robust models for crisis prediction. We conduct a horse race of conventional statistical methods and more recent machine learning methods as early-warning models. As individual models are in the literature most often built in isolation of other methods, the exercise is of high relevance for assessing the relative performance of a wide variety of methods. Further, we test various ensemble approaches to aggregating the information products of the built models, providing a more robust basis for measuring country-level vulnerabilities. Finally, we provide approaches to estimating model uncertainty in early-warning exercises, particularly model performance uncertainty and model output uncertainty. The approaches put forward in this paper are shown with Europe as a playground. Generally, our results show that the conventional statistical approaches are outperformed by more advanced machine learning methods, such as k-nearest neighbors and neural networks, and particularly by model aggregation approaches through ensemble learning.
JEL Code
E44 : Macroeconomics and Monetary Economics→Money and Interest Rates→Financial Markets and the Macroeconomy
F30 : International Economics→International Finance→General
G01 : Financial Economics→General→Financial Crises
G15 : Financial Economics→General Financial Markets→International Financial Markets
C43 : Mathematical and Quantitative Methods→Econometric and Statistical Methods: Special Topics→Index Numbers and Aggregation

Notre site Internet utilise des cookies

Nous utilisons des cookies fonctionnels pour conserver les préférences des utilisateurs, des cookies analytiques pour améliorer les performances du site Internet et des cookies tiers définis par des services tiers intégrés au site.

Vous pouvez les accepter ou les refuser. Pour de plus amples informations ou pour explorer vos préférences en matière de cookies et de logs, nous vous invitons à :

Lire notre déclaration de confidentialité

En savoir davantage sur notre utilisation des cookies